釧路市の次世代エネルギーのポテンシャル 及び地域経済循環に関する研究

目次

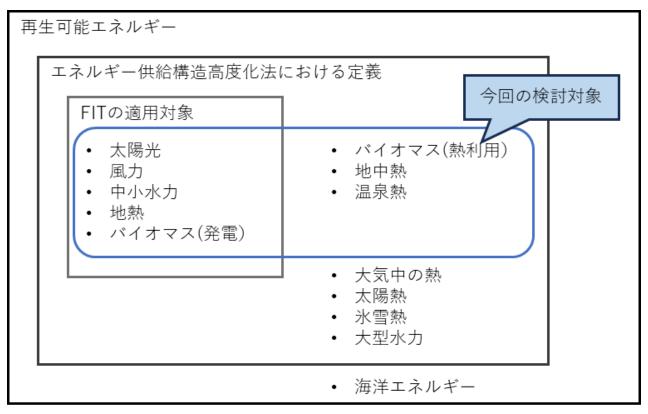
1.	はじめに	P 2
2.	再生可能エネルギーの賦存量・ポテンシャル	P4
3.	再生可能エネルギーの利用可能量推計	P17
4.	釧路市全域の森林による温室効果ガス吸収量推計	P72
5.	次世代エネルギー先進事例調査	P80
6.	検討結果	P84

1.はじめに

1.はじめに

(1) 地域特性および経済可能性を踏まえた再生可能エネルギーの利用可能量推計

環境省REPOSによる釧路市の再生可能エネルギーの賦存量・ポテンシャルは大変大きい数字となっているが、本調査では釧路市の地域特性および経済可能性を踏まえ、一定の仮定をおいて現実的に利用可能な再生可能エネルギーの利用可能量を推計した。


(2) 釧路市全域の森林による温室効果ガス吸収量把握

釧路市全域の森林による温室効果ガス吸収量把握するため、環境省の「地方公共団体(区域施策編)策定・実施マニュアル(算定方法編)」に沿った算定方法で、旧釧路市、阿寒町、音別町にわけて温室効果ガス吸収量を推計した。

【1】検討対象

・ 再生可能エネルギーは、「太陽光風力その他非化石エネルギー源のうち、 エネルギー源として永続的に利用が認められるもの」で今回は以下を対象とし た。

【図表1】再生可能エネルギーの種類と今回の検討対象

【2】環境省REPOSにおける賦存量・導入ポテンシャルの定義

・環境省は、再生可能エネルギーについて、賦存量(技術的に利用可能なエネルギーの大きさ、量)、推計値①(導入ポテンシャル(賦存量のうち種々の制約要因により利用できないものを除いたエネルギーの大きさ、量)、推計値②(事業性を考慮した導入ポテンシャル(利用可能量)と整理している。

【図表2-1】賦存量・導入ポテンシャルの定義

種類	定義
賦存量	・技術的に利用可能なエネルギーの大きさ(kW)または量(kWh等)。 ・設置可能面積、平均風速、河川流量等から理論的に算出することができるエネルギーの大きさ(kW)または量(kWh等)のうち、推計時点において、利用に際し最低限と考えられる大きさのあるエネルギーの大きさ(kW)または量(kWh等)。
推計値① (導入ポテンシャル< 賦存量の内数>)	・各種自然条件・社会条件を考慮したエネルギーの大きさ(kW) または量(kWh 等)。 ・賦存量のうち、エネルギーの採取・利用に関する種々の制約要因(土地の傾斜、法規制、土地利用、居住地からの距離等)により利用できないものを除いた推計時点のエネルギーの大きさ(kW)または量(kWh 等)。
推計値② (事業性を考慮した導 入ポテンシャル(利用 可能量) <推計値①の 内数 >)	・事業性を考慮したエネルギーの大きさ(kW)または量(kWh等)。 推計時点のコスト・売価・条件(導入形態、各種係数等)を設定 した場合に、IRR(法人税等の税引前)が一定値以上となるエネル ギーの大きさ(kW)または量(kWh等)。

出典)環境省「令和3年度再エネ導入ポテンシャルに係る情報活用 及び提供方策検討等調査委託業務報告書 第3章」用語設定・ 定義に関する見直し結果による定義(変更後の定義)を加工し て作成 【図表2-2】再生可能エネルギーポテンシャルメニュー

出典)環境省「再生可能エネルギー情報提供システム(REPOS) に係る利用解説書」

【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル

・環境省REPOSによる釧路市の再生可能エネルギーの賦存量・ポテンシャルは以下のとおりである。

【図表3】釧路市における再生可能エネルギーの賦存量・導入ポテンシャル

大区分	中区分	賦存量	導入ポテンシャル	単位
	建物系	_	698.422	MW
太陽光	土地系	_	3,591.130	MW
	슴計	_	4,289.552	MW
風力	陸上風力	8,784.600	4,847.300	MW
	河川部	7.942	4.907	MW
中小水力	農業用水路	0.000	0.000	MW
	슴計	7.942	4.907	MW
地熱	슴計	583.836	460.312	MW
五人司张工之儿。	· ギー (電気) 合計	9,376.378	9,602.071	MW
丹生り能エイル・	← (电×I) ロ前	20,621,246.372	20,171,331.565	MWh/年
太陽熱		_	1,431,382.795	GJ/年
地中熱		_	7,088,414.584	GJ/年
再生可能エネル	ギー (熱) 合計	-	8,519,797.379	GJ/年
木質バイオマス	発生量(森林由来分)	149.544	_	千㎡/年
小良ハゴカマス	発熱量(発生量ベース)	1,152,180.380	_	GJ/年

出典)環境省「REPOS」、「自治体再エネ情報カルテ」

- 【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル
 - ①太陽光 (建物系)
 - ・REPOSの太陽光(建物系)の賦存量・ポテンシャルの算出フローは以下のとおり。

【図表4】算出フロー<太陽光(建物系)>

カテゴリー	官公庁、病院、学校、戸建住宅等、集合住宅、工場・倉庫、その他建物、鉄道駅
使用情報	GIS情報

GIS情報より取得したポリゴン面積に設置可能面積算定係数を乗じて設置可能面積を算出

カテゴリー	設置可能面積算定係数
戸建住宅等	0.46~0.54 (都道府県ごと)
戸建住宅等以外	0.499

設置可能面積(m)=A×設置可能面積算定係数

導入ポテンシャル (設備容量:kW)

=設置可能面積 (km²) ×設置密度 (kW/km²)

導入ポテンシャル (年間発電量:kWh)

=設備容量(kW)×地域別発電量係数(kWh/kW/年)

※設置密度

戸建住宅等: 0.167kW/㎡

戸建住宅等以外の建物:0.111kW/㎡

- 【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル
 - ②太陽光 (土地系)
 - ・REPOSの太陽光(土地系)の賦存量・ポテンシャルの算出フローは以下のとおり。

【図表5】算出フロー<太陽光(土地系)>

	最終処分場	耕地		荒厚	E 農地	水上
カテゴリー	一般廃棄物	田	畑	再生利用可能	再生利用困難	ため池
使用情報	環境省 一般廃棄物処理実態調査結果	農林水 農地の区 (筆ポリ	画情報		5県別の 是地面積	ため池法に基づくため池 DBをもとに、環境省に おいてGIS情報を整備

各カテゴリーの算定元データと設置可能面積算定係数等から設置可能面積を算出

カテゴリー	設置可能面積算定元データ	設置可能面積算定係数 等
最終処分場/一般廃棄物	埋立面積(㎡)	×1.00
耕地/田・畑	筆ポリコン	各ポリコンの周囲から5m内側に距離を取って再作成 したポリコンの面積を設置可能面積とする
荒廃農地(営農型)	都道府県(北海道は振興局別) 荒廃農地面積を市町村耕地面積により案分した面	(都道府県ごとに設定) ×0.84~0.34
荒廃農地(地上設置型)	元宪辰地国領で印画的标地国領により采力した国 積(㎡)	× 1.00
ため池	満水面積(㎡)	× 0.40

GISを使用した耕地とため池は、推計除外条件に該当するものを除外

導入ポテンシャル (設備容量:kW)

=設置可能面積(km²)×設置密度(kW/km²)

導入ポテンシャル (年間発電量:kWh)

=設備容量(kW)×地域別発電量係数(kWh/kW/年)

※設置密度

地上・水上設置型:0.111kW/㎡

営農型:0.040kW/㎡

出典)環境省「我が国の再生可能エネルギー導入ポテンシャル 概要資料導入編(令和4年)」を基に作成

- 【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル
 - ③陸上風力
 - ・REPOSの陸上風力の賦存量・ポテンシャルの算出フローは以下のとおり。

【図表6】算出フロー<陸上風力>

全国を500mメッシュ単位で区切り、高度90mにおける風葬が5.5m/s未満のメッシュを除く

標高などの自然条件、国立・国定公園等の法制度、居住地からの距離などの土地利用状から 推計除外条件を設定

> 推計除外条件と重なるメッシュを除き、設置可能面積を算出 (解析は100mメッシュ単位で実施)

導入ポテンシャル (設備容量:kW)

=設置可能面積 (km²) ※1×単位面積当たりの設備容量 (kW/km²) ※2

導入ポテンシャル (年間発電量:kWh)

= 設備容量(kW)×理論設備利用率 $^{\times 3}$ ×利用可能率 $^{\times 4}$ ×出力補正係数 $^{\times 4}$ ×年間時間(h)

※1:設置可能面積 = 残った100mメッシュ数×0.01km

※2:単位面積当たりの設備容量=10,000kW/km²

※3:理論設備利用率は風速区分ごとに設定

※4:利用可能率及び出力補正係数は、それぞれ0.95、0.90とした。

出典)環境省「我が国の再生可能エネルギー導入ポテンシャル 概要資料導入編(令和4年) | を基に作成

- 【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル
 - 4洋上風力
 - ・REPOSの洋上風力の賦存量・ポテンシャルの算出フローは以下のとおり。

【図表7】算出フロー<洋上風力>

日本近海を500mメッシュ単位で区切り、海面上140mにおける風速が6.5m/s未満のメッシュ及び 陸地からの距離が30m以上のメッシュを除く

水深200m以上のメッシュ及び国立・国定公園(海域公園)と重なるメッシュを除き、設置可能 面積を算出

導入ポテンシャル (設備容量:kW)

=設置可能面積 (km²) ※1×単位面積当たりの設備容量 (kW/km²) ※2

導入ポテンシャル (年間発電量:kWh)

=設備容量(kW)×理論設備利用率³×利用可能率⁴×出力補正係数⁴×年間時間(h)

※1:設置可能面積 = 残った100mメッシュ数×0.01km

※2:単位面積当たりの設備容量=8,000kW/km²

※2:理論設備利用率は風速区分ごとに設定

※4:利用可能率及び出力補正係数は、それぞれ0.95、0.90とした。

出典)環境省「我が国の再生可能エネルギー導入ポテンシャル 概要資料導入編(令和 4 年)」を基に作成

【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル

⑤中小水力

・REPOSの中小水力の賦存量・ポテンシャルの算出フローは以下のとおり。

【図表8】算出フロー<中小水力>

河川の合流点に仮想発電所を設置すると仮定

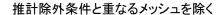
全国の約300の河川流量観測地点の実績値から流況を分析して年間使用可能水量を推計し、 仮想発電所毎に年間発電量(kWh)を算出

全国の約300の河川流量観測地点の実績値から流況を分析して最大流量を推計し、 仮想発電所毎に設備容量(kW)を算出 設備容量(kW)=最大流量(m³/s)×落差(m)×重力加速度(m/s²)×発電効率(%)

- ・建設単価、設備規模において設置困難
- ・すでに発電所が設置されている
- ・推計除外条件と重なる
 - →国立・国定公園等の社会条件(法制度)から設定

該当する仮想発電所を除く

導入ポテンシャル(設備容量:kW)=条件を満たす仮想発電所の出力の合計 導入ポテンシャル(年間発電量:kWh)=条件を満たす仮想発電所の年間発電量の合計


出典)環境省「我が国の再生可能エネルギー導入ポテンシャル概要資料導入編(令和4年) | を基に作成

- 【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル
 - ⑥地熱(熱水資源開発)
 - ・REPOSの地熱(熱水資源開発)の賦存量・ポテンシャルの算出フローは以下のとおり。

【図表9】算出フロー<地熱(熱水資源開発)>

全国を500mメッシュ単位で区切り、 地熱資源量密度分布図より、 技術的に利用可能な密度を持つメッシュを抽出

温度区分	技術的に利用可能
150°C以上	10kW/km ^² 以上
120~150°C	1kW/km³以上
53~120°C	0.1kW/km²以上

推計除外条件

• 国立・国定公園等の法制度、居住地から の距離などの土地利用状況から推計除外 条件を設定

導入ポテンシャル(設備容量:kW) =残ったメッシュの地熱資源量の合計 導入ポテンシャル(年間発電量:kWh)=設備容量(kW)×設備利用率×年間時間(h)

出典)環境省「我が国の再生可能エネルギー導入ポテンシャル 概要資料導入編(令和4年) | を基に作成

【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル

7太陽熱

・REPOSの太陽熱の賦存量・ポテンシャルの算出フローは以下のとおり。

【図表10】算出フロー<太陽熱>

500mメッシュ単位で太陽熱の利用可能量を 推計

太陽熱の利用可能量 (MJ/年)

- =設置可能面積(㎡)
 - ×平均日射量(kWh/m³/日:都道府県別)
 - ×換算係数 3.6MJ/kWh
 - ×集熱効率 0.4
 - ×365 ⊟

地域別・建物用途別の 熱需要原単位(MJ/m³/年)を設定

住宅地図より、500mメッシュ単位で熱需要量を 算定し、「給湯」の熱需要マップを作成

メッシュ単位での熱需要量

= Σ (建物種別 i の延床面積×建物種別 i の地域 別需要原単位)

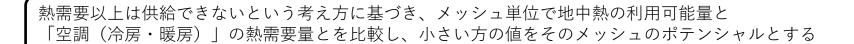
熱需要以上は供給できないという考え方に基づき、メッシュ単位で太陽熱の利用可能量と「給湯」 の熱需要量とを比較し、小さい方の値をそのメッシュのポテンシャルとする

導入ポテンシャル(MJ) =各メッシュのポテンシャルの合計

出典)環境省「我が国の再生可能エネルギー導入ポテンシャル 概要資料導入編(令和4年) | を基に作成

- 【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル ⑧地中熱
 - ・REPOSの地中熱の賦存量・ポテンシャルの算出フローは以下のとおり。

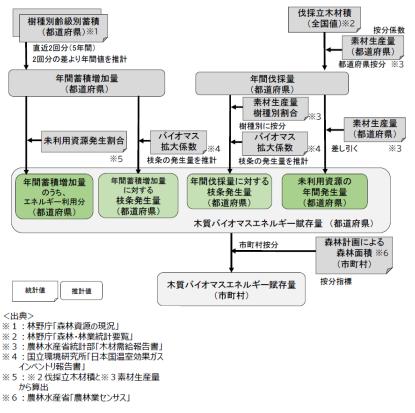
【図表11】算出フロー<地中熱>


500mメッシュ単位で地中熱の利用可能量を推計 個別建物における地中熱の利用可能量 (MJ/年)

- = 採熱可能面積 (m)
 - ×採熱率 (W/m)
 - ×地中熱の交換井の密度(本/m³)
 - ×地中熱の交換井の長さ (m/本)
 - ×年間稼働時間(h/年)
 - ×補正係数 0.75

地域別・建物用途別の熱需要原単位 (MJ/m³/年) を設定

住宅地図より、500mメッシュ単位で熱需要量を 算定し、「冷房」、「暖房」の熱需要マップを作成 メッシュ単位での熱需要量


= Σ (建物種別 i の延床面積×建物種別 i の地域 別需要原単位)

導入ポテンシャル(MJ) =各メッシュのポテンシャルの合計

- 【3】釧路市における再生可能エネルギーの賦存量・ポテンシャル
 - 9木質バイオマス
 - ・REPOSの木質バイオマスの賦存量・ポテンシャルの算出フローは以下のとおり。

【図表12】算出フロー<木質バイオマス>

出典)環境省「木質バイオマスの推計について」(2023年(令和5年)4月)

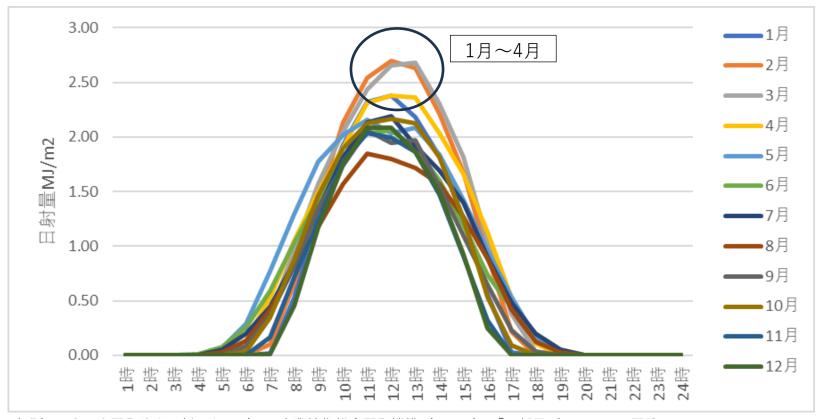
・本調査では、REPOSの賦存量、導入ポテンシャルをベースに、一定の仮定をおいて、 釧路市の再生可能エネルギーの利用可能量(環境省の定義による推計値②(事業性を考慮 した導入ポテンシャル(利用可能量)に該当)を推計した。推計結果の集約は以下のとおり。

【図表13-1】釧路市の再生可能エネルギー利用可能量の推計結果

大区分	中区分	賦存量	導入ポテンシャル	利用可能量	単位
	建物系	_	698.422	185.790	MW
	建物术	-	917,564.988	160,345.428	MWh/年
太陽光	土地系	-	3,591.130	0.000	MW
太陽元	工地术	ı	4,639,122.226	0.000	MWh/年
	合計	ı	4,289.552	185.790	MW
		ı	5,556,687.214	160,345.428	MWh/年
風力	陸上風力	8,784.600	4,847.300	0.000	MW
254, フリ	産工風力	20,555,174.539	11,379,357.924	0.000	MWh/年
	河川部	7.942	4.907	0.000	MW
)-1) 11 Ep	66,071.834	40,828.821	0.000	MWh/年
 中小水力	農業用水路	0.000	0.000	0.000	MW
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	辰未 用小邱	0.000	0.000	0.000	MWh/年
	승計	7.942	4.907	0.000	MW
		66,071.834	40,828.821	0.000	MWh/年
	蒸気フラッシュ	555.661	442.458	0.000	MW
	然気フラッシュ	_	3,084,981.538	0.000	MWh/年
		18.904	12.139	0.000	MW
Lik #h	バイナリー	_	74,436.593	0.000	MWh/年
地熱	低温バイナリー	9.271	5.714	0.000	MW
	低温ハイナリー	_	35,039.474	0.000	MWh/年
	A -1	583.836	460.312	0.000	MW
	合計	_	3,194,457.606	0.000	MWh/年
再生可能エネルギー	/売与) 人士	9,376.378	9,602.071	185.790	MW
再生可能エネルギー	(电观)宣訂	20,621,246.372	20,171,331.565	160,345.428	MWh/年
太陽熱	太陽熱	-	1,431,382.795	0.000	GJ/年
地中熱	地中熱(クローズドルー プ)	-	7,088,414.584	0.000	GJ/年
温泉熱	温泉排熱ヒートポンプ			99.990	GJ/年
再生可能エネルギー	-(熱)合計	-	8,519,797.379	99,990	GJ/年
		149,544	-		千m ³ /年
	発生量(森林由来分)			0.39	MW
木質バイオマス		木質	〔バイオマス発電	3,447.01	MWh/年
	発熱量(発生量ベース)※	1.152.180.380	_	0,117.01	GJ/年
ウオギロ ミノムー a	発生量(乳牛、肉牛) 干t/年	, ,	ガスコージェネ: 熱	50,455.152	GJ/年
家畜糞尿バイオマス	発熱量(発生量ベース) GJ/年	140,153	ガスコージェネ:発電	18,712.892	MWh/年

・推計した太陽光発電の利用可能量推計の内訳は以下のとおり。

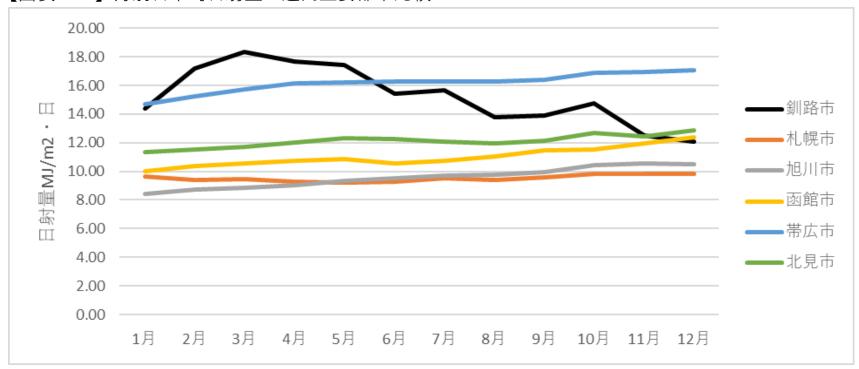
【図表13-2】太陽光発電の利用可能量の内訳


中区分	小区分1	小区分2	導入ポテンシャル	経済性評価に基づく導入可能量	単位	二酸化炭素 削減量 (t-CO ₂ /年)			
	官公庁		10.392	1.270	MW	815			
	日五川		13,425.222	1,264.155	MWh/年	013			
	病院		5.466	0.400	MW	257			
	714170		7,060.539	359.530	MWh/年	237			
	学校		17.200	2.410	MW	1.546			
	子权		22,219.653	2,377.539	MWh/年	1,540			
	 戸建住宅等	<u>±</u>	301.904	50.250	MW	16,923			
	/ 建正七寸	r 	405,332.427	30,601.399	MWh/年	10,323			
独场	集合住宅		12.134	-	MW				
建物系	未口口七		15,674.809	_	MWh/年				
	工場・倉庫		45.156	39.730	MW	25.481			
	工物 信座		58,333.693	38,040.620	MWh/年	23,461			
	その他建物	π	305.581	91.650	MW	58,780			
	ての他建物	ט	394,757.678	87,609.404	MWh/年	36,760			
	鉄道駅		0.589	0.080	MW	51			
			760.968	92.782	MWh/年	31			
		스린	698.422	185.790	MW	100.050			
		合計	917,564.988	160,345.428	MWh/年	103,852			
	最終処分	加克女生	9.300		MW				
	場	一般廃棄物	12,014.000		MWh/年				
		Ш	0.000		MW				
	+# 1/6	田	0.000		MWh/年				
	耕地	.tm	3,578.403		MW				
		畑	4,622,681.392		MWh/年				
L 101. 25		再生利用可能	0.000		MW				
土地系	***	(営農型)	0.000		MWh/年				
	荒廃農地	五七利田田#	3.427		MW				
		再生利用困難	4,426.834		MWh/年				
	L 14 Mb		0.000		MW				
	ため池		0.000		MWh/年				
		A = 1	3,591.130		MW				
		合計	4,639,122.226		MWh/年				

【1】太陽光(建物系)

①釧路市の太陽エネルギーの特性

ポイント 釧路市の日射量は道内他都市と比べ高い。


【図表14-1】釧路市の月別、日別日射量

【1】太陽光(建物系)

①釧路市の太陽エネルギーの特性

【図表14-2】月別日平均日射量の道内主要都市比較

出典)国立研究開発法人 新エネルギー・産業技術総合開発機構(NEDO) 「日射量データベース閲覧システム」

【1】太陽光(建物系)

2経済性評価

・経済性評価を、下記条件、発電量計算式によって行った。

【図表15-1】経済性評価にあたっての条件

佰	断格設定		万円/kWh	その他前提
	住宅用	屋根	28	- パネル劣化率: 0.5%/年
太陽光パネル	産業用	屋上		・パネル寿命 25年
	性未用 	地上	30	•15年後にパワーコンディショナー交換
蓄電池			18	・産業用は毎年要メンテナンス

【図表15-2】可能発電量の計算式

発電量

= 発電最大出力(kW)×日射量(kWh/m・日)×総合設計係数÷標準日射強度(kW/m)

【1】太陽光(建物系)

- 1) 住宅部門の太陽光エネルギーの利用可能性
- ①住宅部門のエネルギー消費実態
- ・経済性評価に利用するデータは環境省による北海道住宅部門のエネルギー消費量とエネルギー単価を利用。

【図表16-1】北海道の住宅部門における世帯当たり平均エネルギー消費量(2023年)

[GJ/世帯·月]

	[40] [1] /1]														
		1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	年間計	支出額 万円/世帯・年
	電力	2.23	1.82	1.55	1.56	1.25	0.94	1.00	1.06	0.98	1.04	1.28	1.57	16.28	15.66
戸建住宅	都市ガス	1.80	1.68	1.35	1.25	0.75	0.40	0.29	0.23	0.23	0.34	0.75	1.26	10.33	4.23
广建任七	LPガス	0.27	0.29	0.25	0.21	0.13	0.07	0.06	0.05	0.05	0.07	0.11	0.19	1.75	1.41
	灯油	6.52	6.54	5.14	3.66	1.53	0.89	0.59	0.38	0.79	2.49	3.27	5.38	37.18	11.46
	電力	1.07	0.90	0.82	0.82	0.73	0.58	0.65	0.70	0.67	0.67	0.72	0.83	9.16	8.71
集合住宅	都市ガス	0.93	0.88	0.70	0.68	0.47	0.32	0.28	0.25	0.26	0.25	0.42	0.69	6.13	3.44
集百任七 	LPガス	0.64	0.70	0.60	0.50	0.36	0.26	0.19	0.17	0.16	0.17	0.30	0.46	4.51	3.56
	灯油	1.99	1.80	1.19	1.18	0.66	0.17	0.03	0.04	0.15	0.56	0.71	1.52	10.00	3.16
1 11 \															

出典)環境省「家庭部門のCO₂排出実態統計調査」

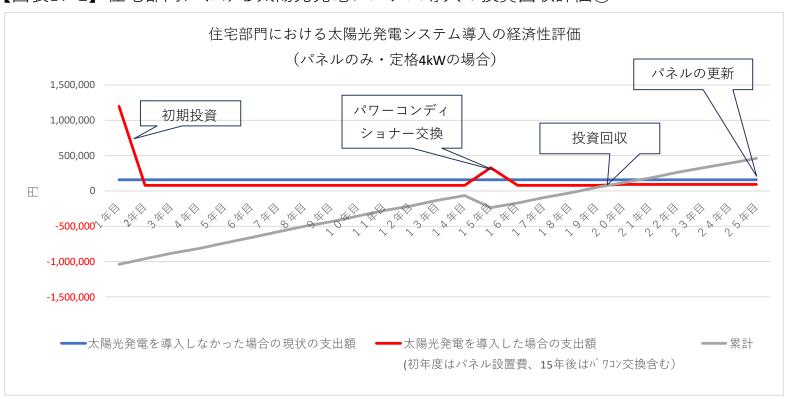
【図表16-2】環境省の家庭部門のエネルギー消費データに基づく各エネルギーの単価

	エネルギー種類	単価
	電力	34.6 円/kwh
戸建住宅	都市ガス	184.3 円/m3
广连任七	LPガス	809.6 円/m3
	灯油	112.5 円/I
	電力	34.2 円/kwh
集合住宅	都市ガス	252.5 円/m3
未口讧七	LPガス	793.2 円/m3
	灯油	115.3 円/I

出典)環境省「家庭部門のCO₂排出実態統計調査」より算出

- 【1】太陽光(建物系)
 - 1) 住宅部門の太陽光エネルギーの利用可能性
 - ②戸建て住宅における再生可能エネルギー導入の経済性評価検討

ポイント


現在の消費電力のみを太陽光発電システムに転換(太陽光パネルのみ)した場合、19年目で投資回収が可能。

【図表17-1】住宅部門における太陽光発電システム導入の経済性評価①

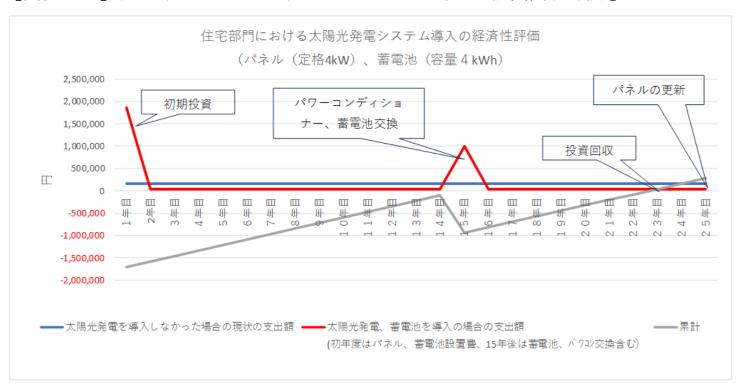
	家計における 電力消費 (kwh)	電気代(円)	日中電力消費(太陽光発電時間帯の割合50%)	太陽光発電 量 (kwh) 定格4kWパネ	夜間等電力 消費 (kwh)	日中不足量 (kwh)	商用電力購 入量 (kwh)	商用電力購 入額 (円)	節約額(円)	太陽光電力消費量	CO2削減量 CO2発生原 単位 kg-CO2/kWh
				ル		商用					0.553
1月	619	21,451	310	372	310	0	310	10,725	10,725	310	171
2月	506	17,507	253	401	253	0	253	8,753	8,753	253	140
3月	431	14,910	215	474	215	0	215	7,455	7,455	215	119
4月	433	15,006	217	441	217	0	217	7,503	7,503	217	120
5月	347	12,024	174	451	174	0	174	6,012	6,012	174	96
6月	261	9,042	131	386	131	0	131	4,521	4,521	131	72
7月	278	9,619	139	405	139	0	139	4,810	4,810	139	77
8月	294	10,196	147	357	147	0	147	5,098	5,098	147	81
9月	272	9,427	136	347	136	0	136	4,713	4,713	136	75
10月	289	10,004	144	381	144	0	144	5,002	5,002	144	80
11月	356	12,313	178	312	178	0	178	6,156	6,156	178	98
12月	436	15,102	218	312	218	0	218	7,551	7,551	218	121
合計	4,522	156,600	2,261	4,639				78,300	78,300	2,261	1,250

- 【1】太陽光(建物系)
 - 1) 住宅部門の太陽光エネルギーの利用可能性
- ②戸建て住宅における再生可能エネルギー導入の経済性評価検討

【図表17-2】住宅部門における太陽光発電システム導入の投資回収評価①

- 【1】太陽光(建物系)
 - 1) 住宅部門の太陽光エネルギーの利用可能性
 - ②戸建て住宅における再生可能エネルギー導入の経済性評価検討

ポイント


現在の消費電力のみを太陽光発電システムに転換(太陽光パネル+蓄電池)した場合、23年目で投資回収が可能。

【図表18-1】住宅部門における太陽光発電システム導入の経済性評価②

	家計における電力消費	電気代(円)	日中電力消 費(太陽光発 電時間帯の	太陽光発電 量 (kwh)		蓄電池容	太陽光パネル +蓄電供給	CO2削減量	商用電力購入量 kwh		
	(kwh)	(口)	割合50%)	定格4kWパネ	余剰発電量	蓄電可能量		kwh	量	kg-CO2/kWh	八里 KWN
			H1 H 00 /0/	ル	(kwh/月)	(kwh/日)	蓄電量/日	蓄電量/月			
1月	619	21,451	310	372	62	2.0	2	62	372	206	248
2月	506	17,507	253	401	149	5.3	4.0	112	365	202	141
3月	431	14,910	215	474	259	8.3	4.0	124	339	188	91
4月	433	15,006	217	441	225	7.5	4.0	120	337	186	97
5月	347	12,024	174	451	277	8.9	4.0	124	298	165	50
6月	261	9,042	131	386	255	8.5	4.0	120	251	139	11
7月	278	9,619	139	405	266	8.6	4.0	124	263	145	15
8月	294	10,196	147	357	209	6.8	4.0	124	271	150	23
9月	272	9,427	136	347	211	7.0	4.0	120	256	142	16
10月	289	10,004	144	381	237	7.6	4.0	124	268	148	20
11月	356	12,313	178	312	134	4.5	4.0	120	298	165	58
12月	436	15,102	218	312	94	3.0	3.0	94	312	173	124
合計	4,522	156,600	2,261	4,639	2,378		45	1,368	3,629	2,007	893

- 【1】太陽光(建物系)
 - 1) 住宅部門の太陽光エネルギーの利用可能性
- ②戸建て住宅における再生可能エネルギー導入の経済性評価検討

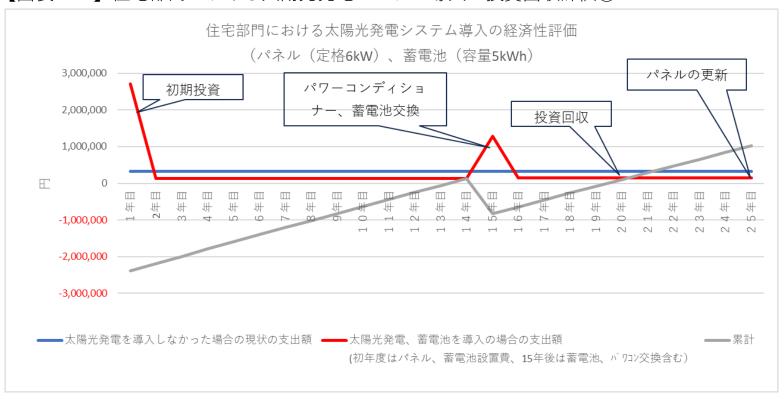
【図表18-2】住宅部門における太陽光発電システム導入の投資回収評価②

- 【1】太陽光(建物系)
 - 1) 住宅部門の太陽光エネルギーの利用可能性
 - ②戸建て住宅における再生可能エネルギー導入の経済性評価検討

ポイント

暖房、給湯含めた全エネルギーを太陽光発電システムに転換(太陽光パネル+蓄電池)した場合、現状では電力支出大幅増で採算性は見込めないが、断熱性能の高い住宅(築20~30年に比べ50%程度の向上を仮定)への導入では20年目で投資回収可能。

【図表19-1】戸建て住宅における消費エネルギーをすべて電気エネルギーに転換した場合の必要電力量


	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	年合計
電力	619	506	431	433	347	261	278	294	272	289	356	436	4,522
都市ガス	500	467	375	347	208	111	81	64	64	94	208	350	2,869
LPガス	75	81	69	58	36	19	17	14	14	19	31	53	486
灯油	1,811	1,817	1,428	1,017	425	247	164	106	219	692	908	1,494	10,328
計	3,006	2,869	2,303	1,856	1,017	639	539	478	569	1,094	1,503	2,333	18,206
電気代(円/月)	104,079	99,366	79,743	64,256	35,206	22,124	18,661	16,545	19,719	37,900	52,040	80,801	630,440
現在の支出額(円/月)	51,094	46,881	38,295	33,098	20,858	13,987	13,109	12,712	13,206	19,635	26,349	38,375	327,600

【図表19-2】住宅部門における太陽光発電システム導入の経済性評価③

	エネルギーす	エネルギーす					蓄電池容	9量推計				
	べて電力とし た場合の家計 における電力 消費 (kwh)	ベて雷カと	現在の光熱 費計 (円)	日中電力消費(太陽光発電時間帯)	太陽光発電 量 (kwh)	余剰発電量 (kwh/月)	蓄電可能量 (kwh/日)	<u>5</u> 蓄電量/日	kwh 蓄電量/月	太陽光パネル +蓄電供給 量	CO2削減量 kg-CO2/kWh	商用電力購 入量 kwh
1月	1,503	52,040	51,094	751	558	0	0.0	0	0	558	308	945
2月	1,435	49,683	46,881	717	602	0	0.0	0	0	602	333	833
3月	1,151	39,871	38,295	576	711	135	4.4	4	135	711	393	440
4月	928	32,128	33,098	464	662	198	6.6	5	150	614	339	314
5月	508	17,603	20,858	254	676	422	13.6	5	155	409	226	99
6月	319	11,062	13,987	160	578	419	14.0	5	150	310	171	10
7月	269	9,331	13,109	135	608	473	15.3	5	155	269	149	0
8月	239	8,272	12,712	119	535	415	13.4	5	155	239	132	0
9月	285	9,860	13,206	142	521	379	12.6	5	150	285	157	0
10月	547	18,950	19,635	274	572	298	9.6	5	155	429	237	119
11月	751	26,020	26,349	376	468	92	3.1	3	92	468	259	283
12月	1,167	40,400	38,375	583	468	0	0.0	0	0	468	259	699
合計	9,103	315,220	327,600	4,551	6,959			42	1,298	5,361	2,965	3,741

- 【1】太陽光(建物系)
 - 1) 住宅部門の太陽光エネルギーの利用可能性
 - ②戸建て住宅における再生可能エネルギー導入の経済性評価検討

【図表19-3】住宅部門における太陽光発電システム導入の投資回収評価③

- 【1】太陽光(建物系)
- 1) 住宅部門の太陽光エネルギーの利用可能性
- ③経済性評価からの結論

ポイント

2001年~2020年建設住宅に太陽光発電、2021年以降建設住宅に太陽光発電+蓄電池 導入した場合の太陽光発電利用可能量は30,601MWh/年と推計される。

【図表20-1】釧路市の戸建住宅数

【図表20-2】釧路市の戸建住宅における太陽光発電システム導入可能量の推計

	築	年	
戸建住宅(戸)	2001~2020年	2021年~	計
住宅数	10,890	1,115	12,005
定格(kW/戸)	4	6	-
発電量(kWh/戸・年)	2,261	5,361	-
二酸化炭素排出削減量 (kg-CO2)	1,250	2,965	4,215

釧路市全体									
定格(MW)	43.56	6.69	50.25						
発電量(MWh)	24,624	5,978	30,601						
二酸化炭素排出削減量 (t-CO2)	13,617	3,306	16,923						

出典) 2021年まで:国土交通省「令和5年 住宅・土地統計調査」

2021年以降:国土交通省「建築着工統計調査」

- 【1】太陽光(建物系)
 - 2) 産業部門(建築系)における太陽エネルギーの利用可能性
- ①主要施設における再生可能エネルギー導入の経済性評価検討
 - ・主要公共施設における太陽光発電システム転換の経済性評価

ポイント

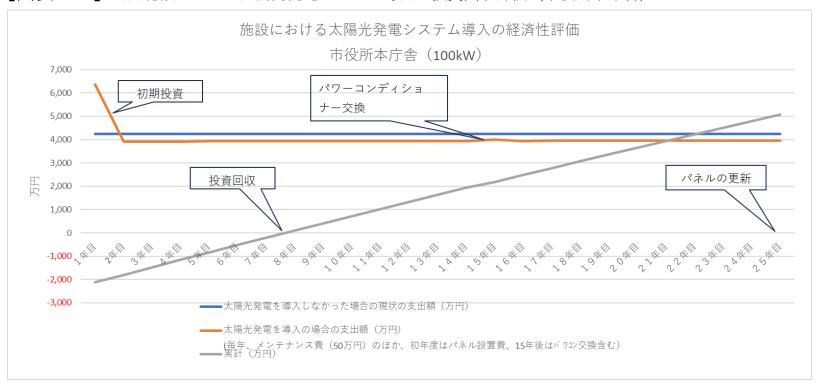
各施設電力需要の一部を太陽光発電に転換する場合、設置して8年後に投資回収可能、蓄電池併用では25年後までの投資回収は困難と推計された。

【図表21-1】施設のエネルギーをすべて電力に転換した場合の例(市役所本庁舎)

	現在の電力消	現在の電力消
	費量	費支出額
	(kwh)	(円)
1月	123,340	3,993,310
2月	115,141	3,727,856
3月	122,015	3,950,412
4月	112,272	3,634,968
5月	102,359	3,314,020
6月	106,715	3,455,052
7月	101,449	3,284,558
8月	103,046	3,336,263
9月	100,022	3,238,356
10月	101,494	3,286,015
11月	104,423	3,380,845
12月	117,988	3,820,032
計	1,310,264	42,421,686

暖房、給湯 含めたすべ てのエネル ギーを電力 に転換した 場合

電力消費量 (kwh)	電力消費支出 額 (円)
575,492	18,632,372
550,844	17,834,360
455,513	14,747,895
379,615	12,290,573
186,144	6,026,674
141,278	4,574,084
114,111	3,694,522
109,421	3,542,661
105,772	3,424,520
117,882	3,816,590
288,775	9,349,504
492,483	15,944,861
3,517,330	113,878,615


- 【1】太陽光(建物系)
 - 2) 産業部門(建築系)における太陽エネルギーの利用可能性
- ①主要施設における再生可能エネルギー導入の経済性評価検討
 - ・主要公共施設における太陽光発電システム転換の経済性評価

【図表21-2】公共施設における太陽光発電システム導入の経済性評価(市役所本庁舎)

				設置に必要な面	i積	1,000	m2	31.6	m四方		CO2削減量
	施設における電力 消費(kwh)	電気代 (円)	日中電力消費 (太陽光発電 時間帯)	太陽光発電量 (kwh)	夜間等電力消費 (kwh)	日中不足量 (kwh)	商用電力購入 量 (kwh)	商用電力購入 額 (円)	節約額 (円)	太陽光電力 消費量	CO2発生原単 位 kg-CO2/kWh
			90	100				32.4			0.553
				太陽光発電量		商	用				
1月	123,340	3,993,310	111,006	9,295	12,334	101,711	114,045	3,692,385	300,926	9,295	5,140
2月	115,141	3,727,856	103,627	10,034	11,514	93,593	105,107	3,402,985	324,871	10,034	5,549
3月	122,015	3,950,412	109,814	11,850	12,202	97,964	110,165	3,566,764	383,647	11,850	6,553
4月	112,272	3,634,968	101,045	11,031	11,227	90,013	101,241	3,277,808	357,159	11,031	6,100
5月	102,359	3,314,020	92,123	11,273	10,236	80,850	91,086	2,949,037	364,984	11,273	6,234
6月	106,715	3,455,052	96,044	9,638	10,672	86,405	97,077	3,143,004	312,048	9,638	5,330
7月	101,449	3,284,558	91,304	10,127	10,145	81,177	91,322	2,956,685	327,872	10,127	5,600
8月	103,046	3,336,263	92,741	8,914	10,305	83,827	94,132	3,047,654	288,609	8,914	4,930
9月	100,022	3,238,356	90,020	8,685	10,002	81,335	91,337	2,957,160	281,196	8,685	4,803
10月	101,494	3,286,015	91,345	9,527	10,149	81,818	91,967	2,977,568	308,446	9,527	5,268
11月	104,423	3,380,845	93,981	7,801	10,442	86,180	96,622	3,128,282	252,563	7,801	4,314
12月	117,988	3,820,032	106,189	7,803	11,799	98,387	110,186	3,567,414	252,617	7,803	4,315
合計	1,310,264	42,421,686	1,179,238	115,978				38,666,747	3,754,939		64,136

- 【1】太陽光(建物系)
 - 2) 産業部門(建築系)における太陽エネルギーの利用可能性
- ①主要施設における再生可能エネルギー導入の経済性評価検討
 - ・主要公共施設における太陽光発電システム転換の経済性評価

【図表21-3】公共施設における太陽光発電システム導入の投資回収評価(市役所本庁舎)

- 【1】太陽光(建物系)
 - 2) 産業部門(建築系)における太陽エネルギーの利用可能性
 - ①主要施設における再生可能エネルギー導入の経済性評価検討
 - 分析例

【図表22-1】阿寒町行政センター

				設置に必要な面	積	100	m2	10.0	m四方		CO2削減量
	施設における 電力消費 (kwh)	電気代(円)	日中電力消費 (太陽光発電 時間帯)	太陽光発電量 (kwh)	夜間等電力 消費 (kwh)	日中不足量 (kwh)	商用電力購入量 (kwh)	商用電力購入額 (円)	節約額(円)	太陽光電力 消費量	CO2発生原 単位 kg- CO2/kWh
			90	10				32.8			0.553
				太陽光発電量			商用				
1月	10,840	355,956	9,756	929	1,084	8,827	9,911	325,435	30,521	929	514
2月	9,655	317,044	8,690	1,003	966	7,686	8,652	284,095	32,949	1,003	555
3月	8,759	287,622	7,883	1,185	876	6,698	7,574	248,711	38,911	1,185	655
4月	7,352	241,420	6,617	1,103	735	5,514	6,249	205,195	36,224	1,103	610
5月	6,014	197,483	5,413	1,127	601	4,285	4,887	160,466	37,018	1,127	623
6月	5,893	193,510	5,304	964	589	4,340	4,929	161,861	31,649	964	533
7月	6,031	198,042	5,428	1,013	603	4,415	5,018	164,788	33,254	1,013	560
8月	5,856	192,295	5,270	891	586	4,379	4,965	163,023	29,272	891	493
9月	5,706	187,370	5,135	869	571	4,267	4,837	158,850	28,520	869	480
10月	6,097	200,209	5,487	953	610	4,535	5,144	168,925	31,284	953	527
11月	7,064	231,963	6,358	780	706	5,578	6,284	206,347	25,616	780	431
12月	8,748	287,261	7,873	780	875	7,093	7,968	261,639	25,621	780	431
合計	88,015	2,890,174	79,214	11,598				2,509,335	380,839		6,414

- 【1】太陽光(建物系)
 - 2) 産業部門(建築系)における太陽エネルギーの利用可能性
 - ①主要施設における再生可能エネルギー導入の経済性評価検討
 - 分析例

【図表22-2】鳥取西中学校

				設置に必要な面	積	300	m2	17.3	m四方		CO2削減量
	施設における 電力消費 (kwh)	電気代(円)	日中電力消費 (太陽光発電 時間帯)	太陽光発電量 (kwh)	夜間等電力 消費 (kwh)	日中不足量 (kwh)	商用電力購入量 (kwh)	商用電力購入額 (円)	節約額(円)	太陽光電力 消費量	CO2発生原 単位 kg- CO2/kWh
			90	30				31.4			0.553
				太陽光発電量			商用				
1月	22,358	702,319	20,122	2,788	2,236	17,334	19,570	614,730	87,590	2,788	1,542
2月	21,750	683,221	19,575	3,010	2,175	16,565	18,740	588,661	94,559	3,010	1,665
3月	18,945	595,109	17,051	3,555	1,895	13,496	15,390	483,441	111,667	3,555	1,966
4月	22,358	702,319	20,122	3,309	2,236	16,813	19,049	598,362	103,958	3,309	1,830
5月	15,551	488,495	13,996	3,382	1,555	10,614	12,169	382,260	106,235	3,382	1,870
6月	13,106	411,691	11,795	2,891	1,311	8,904	10,215	320,864	90,827	2,891	1,599
7月	11,362	356,908	10,226	3,038	1,136	7,188	8,324	261,475	95,433	3,038	1,680
8月	5,879	184,674	5,291	2,674	588	2,617	3,205	100,669	84,005	2,674	1,479
9月	9,717	305,235	8,745	2,606	972	6,140	7,111	223,388	81,847	2,606	1,441
10月	16,610	521,761	14,949	2,858	1,661	12,091	13,752	431,982	89,779	2,858	1,581
11月	19,310	606,574	17,379	2,340	1,931	15,039	16,970	533,061	73,513	2,340	1,294
12月	23,703	744,569	21,333	2,341	2,370	18,992	21,362	671,040	73,529	2,341	1,294
合計	200,649	6,302,875	180,584	34,793				5,209,934	1,092,941	34,793	19,241

- 【1】太陽光(建物系)
 - 2) 産業部門(建築系)における太陽エネルギーの利用可能性
 - ①主要施設における再生可能エネルギー導入の経済性評価検討
 - 分析例

【図表22-3】市立釧路総合病院

				設置に必要な面	積	500	m2	22.4	m四方		CO2削減量
	施設における 電力消費 (kwh)	電気代(円)	日中電力消費 (太陽光発電 時間帯)	太陽光発電量 (kwh)	夜間等電力 消費 (kwh)	日中不足量 (kwh)	商用電力購入量 (kwh)	商用電力購入額 (円)	節約額(円)	太陽光電力 消費量	CO2発生原 単位 kg- CO2/kWh
			90	50				32.4			0.553
				太陽光発電量			商用				
1月	702,940	22,758,696	632,646	4,647	70,294	627,999	698,293	22,608,233	150,463	4,647	2,570
2月	630,388	20,409,727	567,349	5,017	63,039	562,332	625,371	20,247,291	162,435	5,017	2,774
3月	680,411	22,029,287	612,370	5,925	68,041	606,445	674,486	21,837,463	191,824	5,925	3,276
4月	663,211	21,472,419	596,890	5,516	66,321	591,374	657,695	21,293,839	178,580	5,516	3,050
5月	667,843	21,622,393	601,059	5,637	66,784	595,422	662,207	21,439,901	182,492	5,637	3,117
6月	657,152	21,276,243	591,437	4,819	65,715	586,618	652,333	21,120,219	156,024	4,819	2,665
7月	703,659	22,781,968	633,293	5,063	70,366	628,229	698,595	22,618,032	163,936	5,063	2,800
8月	714,771	23,141,748	643,294	4,457	71,477	638,837	710,314	22,997,444	144,304	4,457	2,465
9月	659,251	21,344,189	593,326	4,343	65,925	588,983	654,908	21,203,591	140,598	4,343	2,401
10月	668,335	21,638,322	601,502	4,763	66,834	596,738	663,572	21,484,099	154,223	4,763	2,634
11月	648,889	21,008,704	584,000	3,900	64,889	580,099	644,988	20,882,422	126,282	3,900	2,157
12月	705,583	22,844,267	635,025	3,901	70,558	631,123	701,682	22,717,958	126,309	3,901	2,157
合計	8,102,433	262,327,963	7,292,190	57,989				260,450,493	1,877,469		32,068

【1】太陽光(建物系)

- 2) 産業部門(建築系)における太陽エネルギーの利用可能性
- ②経済性評価からの結論

ポイント

建築面積別建物割合、建物種類別建物数より建物種類別建物面積階級別棟数を推計し、建物面積別に対応した規模の発電システムを導入したと仮定すると太陽光発電利用可能量は129,744MWh/年と推計された。

【図表23-1】住宅を除く、建築面積150㎡以上の建物棟数に占める建築面積階級別構成【釧路市】

	棟数
官公庁	53
病院	17
学校	99
工場·倉庫	1548
その他建物	3560
鉄道駅	7
	5284

	151~500m ²	501~1500m ²	1501m ² ∼
棟数割合 (建築面積150m ² 以上の住宅以 外の建物5,284棟の構成)	68.9%	13.9%	5.0%

出典) 北海道「2015年(平成27年)都市計画基礎調査【釧路市】」より作成

【図表23-2】建物種類別の建築面積階級別棟数の設定【釧路市】

		建築面積別棟数の設定				
	1501m2~	501~1500m2	151~500m2	~151m	合計	
官公庁	2	7	36	8	53	
病院	1	2	10	4	17	
学校	4	13	68	14	99	
工場・倉庫	77	215	1,064	192	1548	
その他建物	179	495	2,450	436	3560	
鉄道駅	0	0	4	3	7	

【1】太陽光(建物系)

- 2) 産業部門(建築系)における太陽エネルギーの利用可能性
- ②経済性評価からの結論

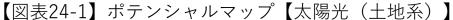
【図表23-3】太陽光発電システムの利用可能量の推計結果(定格電力)

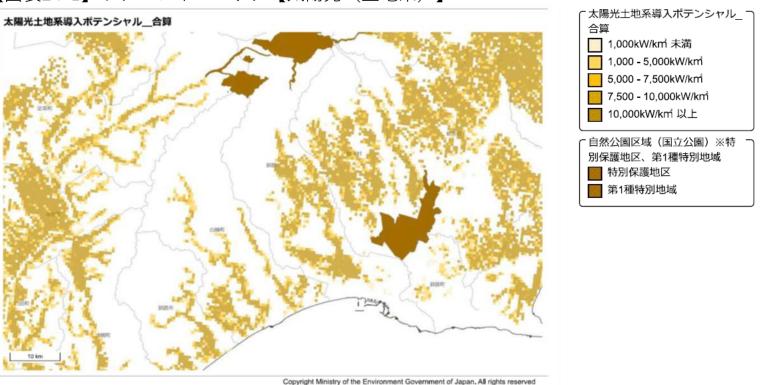
					<u> </u>
		Æ1H F	E/J (NT)		
	100	50	30	10	計
官公庁	200	350	540	180	1,270
病院	100	100	150	50	400
学校	400	650	1,020	340	2,410
工場·倉庫	7,700	10,750	15,960	5,320	39,730
その他建物	17,900	24,750	36,750	12,250	91,650
鉄道駅	0	0	60	20	80
合計	26,300	36,600	54,480	18,160	135,540

【図表23-4】太陽光発電システムの利用可能量の推計結果(発電量)

		定格電力規模別発電量(kWh)				
	100	50	30	10	計	
官公庁	23,196	405,921	626,279	208,760	1,264,155	
病院	11,598	115,978	173,966	57,989	359,530	
学校	46,391	753,854	1,182,971	394,324	2,377,539	
工場・倉庫	893,027	12,467,581	18,510,009	6,170,003	38,040,620	
その他建物	2,075,997	28,704,431	42,621,731	14,207,244	87,609,404	
鉄道駅	0	0	69,587	23,196	92,782	
合計	3,050,208	42,447,765	63,184,542	21,061,514	129,744,029	

- 【1】太陽光(建物系)
 - 2) 産業部門(建築系)における太陽エネルギーの利用可能性
 - ②経済性評価からの結論

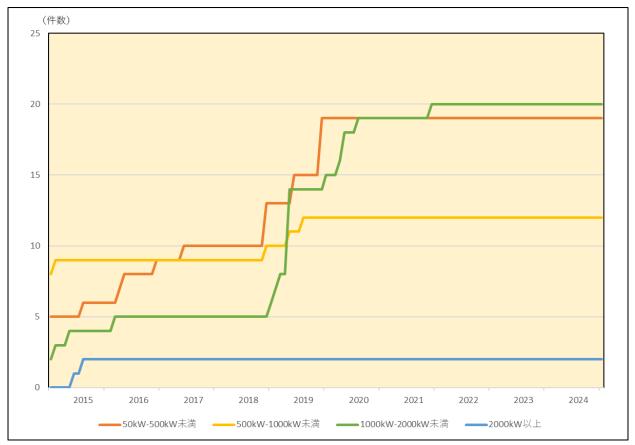

【図表23-5】定格電力規模別二酸化炭素排出削減量の推計結果


	定格	定格電力規模別二酸化炭素削減量(t-CO2)				
	100	50	30	10	計	
官公庁	128	224	346	115	815	
病院	64	64	96	32	257	
学校	257	417	654	218	1,546	
工場•倉庫	4,938	6,895	10,236	3,412	25,481	
その他建物	11,480	15,874	23,570	7,857	58,780	
鉄道駅	0	0	38	13	51	
	16,868	23,474	34,941	11,647	86,929	

【2】太陽光(土地系)

1) 現状と課題

・釧路市は太陽エネルギーのポテンシャルが高く太陽光発電所建設が相次いでいるが、釧路湿原周辺の太陽光発電建設の生態系、景観、防災への影響が懸念されている。



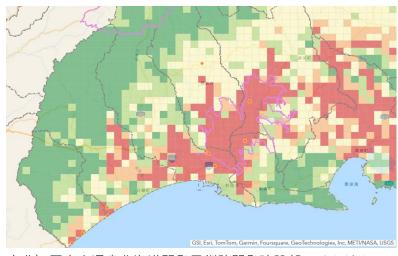
出典)環境省「REPOS」>再生可能エネルギーポテンシャルメニュー>太陽光>地図>土地系導入ポテンシャル

【2】太陽光(土地系)

1) 現状と課題

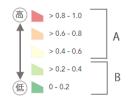
【図表24-2】釧路市の太陽光発電所運転開始件数累積(発電出力50kW以上)

出典) FITポータル「事業計画認定情報 公表用ウェブサイト 2025年1月31日 時点」より作成


- 【2】太陽光(土地系)
 - 2) 事業性を加味した利用可能量の検討

【図表25-1】FIT認定状況(釧路市、太陽光、発電出力100kW以上)

株式会社エコパワーJP		発電出力 (kW)	発電設備の所在地	太陽電池の合計出力(kW	新規認定日	運転開始報告年月
	北海道釧路市	20,000	北海道釧路市音別町中音別40	24,696	2012年8月14日	2015年7月
SGET釧路メガソーラー合同会社	北海道釧路市	15,000	北海道釧路市鶴野58-4	21,717	2012年11月13日	2015年5月
合同会社FLOR DE LOTO56	東京都港区	12,000	北海道釧路市鶴野4-3	15,677	2024年9月24日	
株式会社エイワット	大阪府堺市	1,999	北海道釧路市鶴野40-2	3,034	2014年3月4日	2020年7月
大和ハウス工業株式会社	大阪府大阪市	1,999	北海道釧路市益浦4-67-1	3,164	2024年5月8日	
合同会社桜道25	東京都港区	1,999	北海道釧路市音別町中音別631-3	3,046	2022年3月22日	
合同会社桜道33	東京都港区		北海道釧路市阿寨町旭町三丁目33-10	3,046	2022年9月20日	
合同会社桜道33	東京都港区	1,999		3,046	2022年9月20日	
合同会社桜道33	東京都港区	1,999	北海道釧路市阿寒町飽別新89-1	3,046	2022年9月20日	
有限会社マヒユタ	東京都練馬区		北海道釧路市音別町中音別54-1	2.631	2013年9月27日	2020年4月
グリーンパワーマネジメント株式会社	東京都港区		北海道釧路市音別町中音別72	2,457	2013年9月27日	2020年4月
五十嵐ホールディングス株式会社	北海道名寄市		北海道釧路市愛国191-201	2,002	2014年3月25日	2018年12月
山佐株式会社	岡山県新見市		北海道釧路市北國41-358	3,180	2014年3月5日	2019年4月
山佐株式会社	岡山県新見市		北海道釧路市北國41-299	3,180	2014年3月5日	2019年4月
山に休れ去社 大和ハウス工業株式会社	大阪府大阪市	1,970		3,100	2024年8月13日	20194-47
						2019年4月
広葉樹合板株式会社	北海道旭川市	1,920	北海道釧路市鶴野246-7 北海道釧路市北園41-96	2,714 2.832	2014年4月10日 2014年3月5日	2019年4月
山佐株式会社	岡山県新見市					
株式会社神戸物産	兵庫県加古川市	1,900		2,587	2013年3月7日	2019年4月
株式会社ハウジング・サポート・エステート	北海道北見市	1,880		2,714	2014年4月10日	2019年4月
阿寒農業協同組合	北海道釧路市	1,880		2,387	2013年3月14日	2019年2月
上見ピーソー株式会社	北海道釧路市	1,600	TOTAL STREET HOST STEEDS TO ME	1,978	2013年9月27日	2020年3月
東部開発株式会社	北海道釧路市	1,560		2,156	2018年12月19日	2021年11月
GPSS4合同会社	東京都港区	1,550	北海道釧路市三津浦47-1	2,131	2016年2月29日	2019年12月
合同会社北海道再エネ推進プラットフォーム	北海道岩見沢市	1,500	北海道釧路市益浦四丁目90番1	2,191	2012年12月10日	2014年12月
株式会社カイトー商会	北海道釧路市	1,500	北海道釧路市阿寒町富士見3-21-2	2,029	2014年3月19日	2019年1月
JAG北海道ソーラー開発合同会社	北海道札幌市	1,477	北海道釧路市星が浦南 5 - 1 - 3 0	1,530	2012年8月16日	2013年11月
株式会社令清舎	北海道釧路市	1,000	北海道釧路市桜ケ岡8-92-1	1,224	2014年3月14日	2016年2月
京セラTCLソーラー合同会社	東京都千代田区	1,000	北海道釧路市貝塚1-4-1	1,215	2014年1月27日	2015年1月
HWソーラーパワー10合同会社	東京都港区	1,000	北海道釧路市愛国191-231	1,000	2013年1月7日	2015年4月
東部開発株式会社	北海道釧路市	999	北海道釧路市新野24番地1	2,076	2012年10月29日	2013年11月
菱中産業株式会社	北海道帯広市	990	北海道釧路市大楽毛2線171-1	1,797	2014年3月25日	2019年7月
合同会社北海道再エネ推進プラットフォーム	北海道岩見沢市	990	北海道釧路市桜ケ岡四丁目25番31	1,412	2012年12月10日	2014年12月
株式会社サガミ	神奈川県構須賀市	987	北海道釧路市愛国191-220	988	2013年3月18日	2014年7月
株式会社マウントコーポレーション	北海道札幌市	910	北海道釧路市北園41-215	910	2012年11月2日	2014年4月
JFEソーラーパワー株式会社	神奈川県横浜市	904		904	2012年11月2日	2013年12月
株式会社 マイティー	北海道札幌市	800		1,012	2012年7月4日	2014年1月
株式会社ヒデ・ハウジング	愛知県豊橋市	750		1,369	2017年2月23日	2019年4月
株式会社かがやき開発	東京都港区	750		816	2013年4月23日	2014年8月
HWソーラーパワー10合同会社	東京都港区	660		660	2013年1月7日	2015年1月
HWソーラーパワー10合同会社	東京都港区	550		809	2013年1月7日	2018年11月
JAG北海道ソーラー開発合同会社	北海道札幌市		北海道釧路市音別町若草1-3-2	702	2012年8月17日	2018年11月
t A G 北海道 / 一 / 一 開光 ロ 円 云 社 株式会社ハウジング・サポート・エステート	北海道北見市	499		522	2012年8月17日	2013年11月
RASEはハリンフク・サホード・エステード 音別環境株式会社	北海道和昆巾 北海道釧路市	499		522	2015年2月10日	2019年11月 2019年11月
		499	1010/02/2019/11/19/19/19 10 10 10 10 10 10 10 10 10 10 10 10 10	512		
音別環境株式会社 音別環境株式会社	北海道釧路市 北海道釧路市	499	北海道釧路市音別町あけぼの1-6 北海道釧路市音別町あけぼの1-13-1	512	2014年1月27日 2014年1月27日	2019年11月 2019年11月
			10145 EX 151 15 M 10 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
有限会社ユウシン	千葉県柏市	495	北海道釧路市三津浦44-73	495	2013年1月28日	2014年4月
株式会社忠和商事	北海道釧路町	495		495	2014年2月25日	2016年11月
有限会社ユウシン	千葉県柏市	495		495	2015年3月23日	2018年11月
有限会社ユウシン	千葉県柏市	495		495	2015年3月23日	2018年11月
有限会社ユウシン	千葉県柏市	495	1010/02/2019/01/11/01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	495	2015年3月23日	2018年11月
株式会社フルステイーム	北海道旭川市		北海道釧路市桂恋192番14	464	2012年12月27日	2014年1月
有限会社ユウシン	千葉県柏市		北海道釧路市三津浦44-69	460	2014年3月25日	2015年7月
ロイヤルリース株式会社	千葉県千葉市		北海道釧路市阿寒町新町1-31-7	536	2012年12月21日	2019年5月
柘殖不動産株式会社	北海道釧路市	438	北海道釧路市景国191-649, 650, 5087	438	2014年2月26日	2016年3月
GPSS4合同会社	東京都港区	375	北海道釧路市武佐3-39-314	527	2014年12月9日	2016年4月
ロイヤルリース株式会社	千葉県千葉市	280	北海道釧路市阿寒町新町2-33-10	313	2012年12月21日	2019年5月
株式会社カイトー商会	北海道釧路市	250	北海道釧路市阿寒町北町1-35-1	350	2014年3月7日	2017年5月
	東京都中央区	244	北海道釧路市宝町4-1	244	2012年12月5日	2013年12月
株式会社ニチレイ					,	,,
	東京都調布市	233	北海道釧路市三津浦13-2	447	2022年8月31日	
株式会社ニチレイ 合同会社甲府サービス 株式会社本田組	東京都調布市 北海道釧路市	233 100		447 100	2022年8月31日 2012年10月12日	2013年11月


- 【2】太陽光(土地系)
 - 2) 事業性を加味した利用可能量の検討

【図表25-2】タンチョウ営巣適応度

凡例

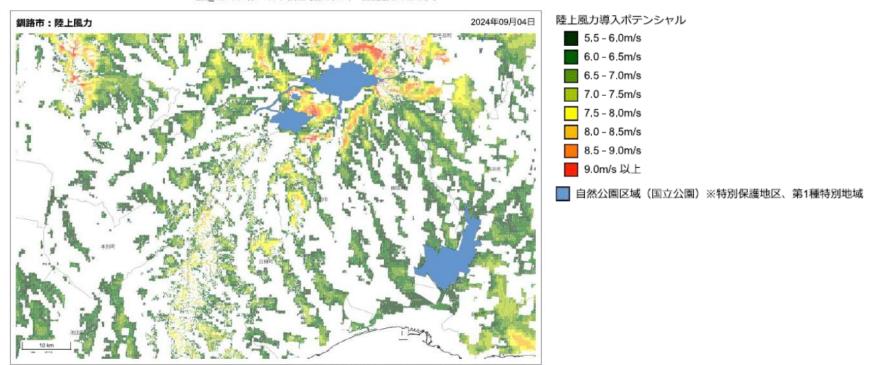
・北海道釧路総合振興局および根室振興局の範囲のタンチョウの営巣適応度(0~1.0)を 5 段階に区切り、 2km メッシュで表示。

- ・Aのメッシュ区域内において太陽光発電事業を計画・予定されている方は、必ず事前にタンチョウの生息情報や必要となる手続きについて関係機関にご確認ください。 タンチョウの営巣地や生息地等に該当する場合は、計画の中止を含めた抜本的な見直しを求められる場合があります。
- ・ただし、 ${f B}$ のメッシュ内でもタンチョウの生息地になっている可能性はありますので注意してください。

出典) 国土交通省北海道開発局釧路開発建設部一せんけんフォーサイトーHP上にあるWEBMAPより作成

・以上の懸念から今回推計では対象外とする。

【3】陸上風力


1) 現状と課題

・ポテンシャルを有する地域は阿寒・摩周国立公園周辺が中心だが現在稼働中の風力発電はない。

【図表26-1】ポテンシャルマップ【陸上風力】

2024/09/04 10:13

地図_REPOS(リーポス(再生可能エネルギー情報提供システム))

出典)環境省「REPOS」>再生可能エネルギーポテンシャルメニュー>風力>地図>陸上風力導入ポテンシャルを選択

【3】陸上風力

1) 現状と課題

【図表26-2】令和元年度における陸上風力の導入ポテンシャル推計条件(開発不可条件)

区 分	項目	開発不可条件(R1年度)
自然条件	風速区分	5.5m/s未満
	標高	1,200m以上
	最大傾斜角	20度以上
	地上開度	75° 未満
社会条件:	法規制区分	① 国立·国定公園(特別保護地区、第2種特別地域)
法制度等	(自然的条件)	② 都道府県立自然公園(第1種特別地域)
		③ 原生自然環境保全地域
		④ 自然環境保全地域
		⑤ 鳥獣保護区のうち特別保護地区
		(国指定、都道県指定)
		⑥ 世界自然遺産地域
		⑦ 保安林
	法規制区分 (社会的条件)	① 航空法による制限 (制限表面)
社会条件:	都市計画区分	「準工業地域」、「工業地域」、「工業専用地域」を除く市街化区域
土地利用等		田、建物用地、その他の用地、河川地及び湖沼、
	土地利用区分	海水域、ゴルフ場
	工程初加区为	※「その他農用地」、「森林(保安林を除く)」、「荒地」、「海
		浜」が開発可能な土地利用区分となる
	居住地からの距離	500m未満

出典)環境省「令和3年度再エネ導入ポテンシャルに係る情報活用及び提供方策検討等調査委託業務報告書」>第3章3.2導入 ポテンシャル情報の精緻化

【3】陸上風力

1) 現状と課題

【図表26-3】令和3年度推計の主な変更点

項目	R3年度における設定	R1年度における設定
推計除外条件:	推計除外条件に非該当	推計除外条件に該当
保安林	(導入ポテンシャル対象)	(導入ポテンシャル対象外)
推計除外条件:	推計除外条件に非該当	推計除外条件に該当
その他の用地	(導入ポテンシャル対象)	(導入ポテンシャル対象外)

出典)環境省「我が国の再生可能エネルギー導入ポテンシャル 概要資料導入編」>陸上風力発電の導入ポテンシャル (2021年(令和3年)度推計)

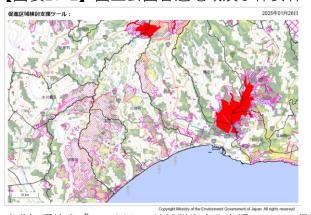
【図表26-4】FIT認定状況

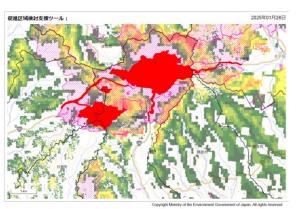
発電事業者名	事業者の住所	発電出力 (kW)	発電設備の所在地	新規認定日	運転開始報告年月
合同会社ヒラク	東京都中央区	19.8	北海道釧路市三津浦10-21	2017年2月28日	運転開始前
ASA株式会社	東京都目黒区	19.8	北海道釧路市大楽毛4-43	2017年3月15日	運転開始前
株式会社エネプライム	東京都新宿区	19.5	北海道釧路市音別町中音別631番3	2018年3月22日	運転開始前
ASA株式会社	東京都目黒区	19.8	北海道釧路市大楽毛8-1	2017年8月29日	運転開始前
ASA株式会社	東京都目黒区	19.8	北海道釧路市大楽毛248-8	2017年10月5日	運転開始前
ASA株式会社	東京都目黒区	19.5	北海道釧路市音別町あけぼの2丁目3	2017年10月2日	運転開始前
ASA株式会社	東京都目黒区	19.5	北海道釧路市大楽毛4-775	2017年11月28日	運転開始前
ASA株式会社	東京都目黒区	19.5	北海道釧路市三津浦18番1	2018年2月7日	運転開始前
ASA株式会社	東京都目黒区	19.5	北海道釧路市桂恋192番33	2018年3月14日	運転開始前
ASA株式会社	東京都目黒区	19.8	北海道釧路市大楽毛4番18	2018年3月15日	運転開始前
合同会社SunSunソーラーパーク	東京都港区	19.5	北海道釧路市星が浦南六丁目7番14	2018年3月28日	運転開始前

出典) FITポータル「事業計画認定情報 公表用ウェブサイト 2025年1月31日 時点 | より作成

【3】陸上風力

2) 事業性を加味した利用可能量の検討

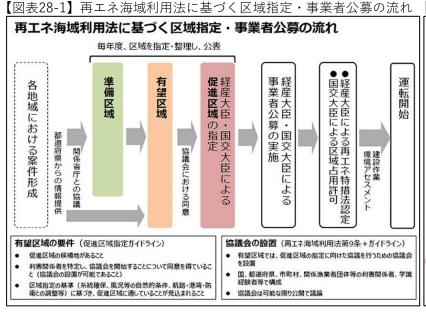

・ポテンシャルを有する地域は阿寒・摩周国立公園普通地域、その周辺地域で利用可能 とは言えず、阿寒・摩周国立公園周辺以外の地域でもアクセス道路、送電線等の観点よ り事業化は困難と想定され今回推計対象外とする。

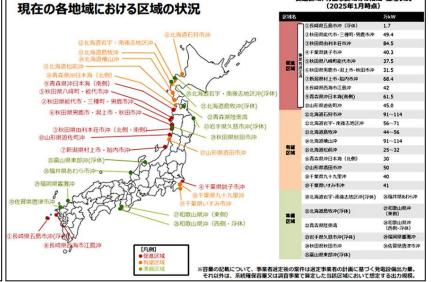

【図表27-1】事業性を加味した主な除外条件(陸上風力)

	事未止で加州し	
考质	慮すべき項目	事業性を加味した除外条件
風況		地上高70m における 年間平均風速 6.0m/s 未満の陸域
国立公園		普通地域及びその周辺
保安林		保安林
送電線	送電線からの距離	40km以上
道路	道路からの距離	幅員5.5m以上の道路からの距離10km以上
環境保全	鳥類等の保全すべき生息	該当地形
	環境(地形など)	
	鳥類等の保全すべき生息	高度利用エリア及び周辺エリア
	環境 (生息の場)	
	鳥類等の主要な生息環境	確認場所・周辺エリア
	(渡りルートなど)	

出典)石狩市「風力発電ゾーニング計画書」から作成

【図表27-2】国立公園普通地域及び保安林


出典)環境省「REPOS」>地域脱炭素化支援ツール>促進区域検討支援ツール

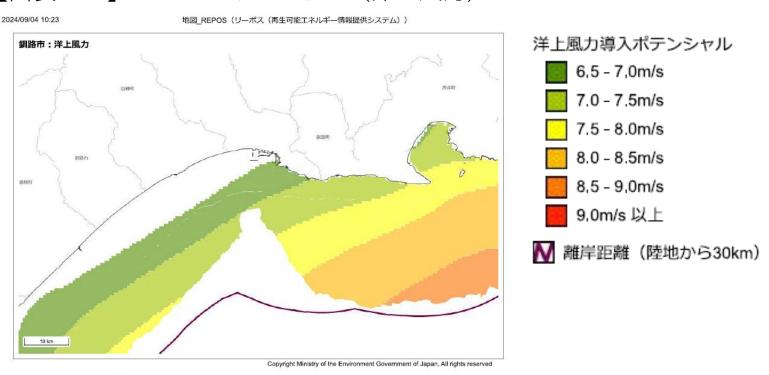

【4】洋上風力

1) 現状と課題

・再エネ海域利用法での手続きの流れと区域等の指定状況は下記のとおりである。

【図表28-2】現在の区域指定の状況

出典)資源エネルギー庁「再エネ海域利用法に基づく区域指定 ・事業者公募の流れ及び案件形成状況」(資源エネルギ ー庁ホーム) > 政策について > 省エネルギー・新エネル ギー>新エネルギー>なっとく!再生可能エネルギー> 洋上風力発電関連制度>制度の概要


出典)資源エネルギー庁「再エネ海域利用法に基づく区域指定・ 事業者公募の流れ及び案件形成状況」(資源エネルギー庁 ホーム) > 政策について>省エネルギー・新エネルギー> 新エネルギー>なっとく!再生可能エネルギー>洋上風力 発電関連制度>制度の概要

促進区域、有望な区域等の指定・整理状況

【4】洋上風力

1) 現状と課題

【図表28-3】ポテンシャルマップ(洋上風力)

出典)環境省「REPOS」>再生可能エネルギーポテンシャルメニュー>風力>地図>洋上風力導入ポテンシャルを選択

【4】洋上風力

2) 事業性を加味した利用可能量の検討

・釧路市周辺のポテンシャルがあるが、この海域には漁業権が設定され区域指定の動きもないことから検討対象外とする。

【図表29-1】事業性を加味した主な除外条件(洋上風力)

	<u> </u>
考慮すべき項目	事業性を加味した除外条件
風況	地上高70mにおける年間平均風速6.5m/s未満の海域
海域水深	水深200m以浅
	但し、着床式は50m以浅
漁港区域	漁港区域
漁業権区域	設定海域(区画漁業権、定置漁業権については、環
	境保全エリアとして特に留意が必要。共同漁業権に
	ついては、調整が必要)
操業区域 (漁場)	
航路	航路の海域
船舶航行実態	高利用海域及びその周囲(1,000m)
J. II.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

出典)石狩市「風力発電ゾーニング計画書」から作成

【図表29-2】漁業権

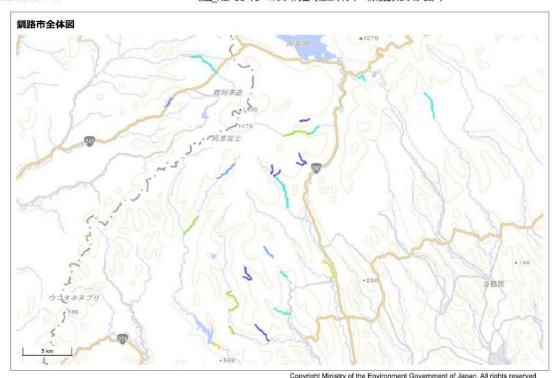
【5】中小水力

1) 現状と課題

・釧路市内の水力発電所とポテンシャルは以下のとおり。

【図表30-1】釧路市内の水力発電所

発電所	出力(kW)	運転開始年月
上飽別発電所	4,730	1929年 2月 2021年12月[更新]
飽別発電所	6,940	1920年 9月 2024年11月[更新]
徹別発電所	2,410	1922年 7月 2024年 10月[更新]
蘇牛発電所 <更新工事中>	3400 <3,720>	1925年 12月 <2028年更新予定>


【5】中小水力

1) 現状と課題

【図表30-2】ポテンシャルマップ(中小水力)

2024/09/03 17:13

地図 REPOS (リーポス(再生可能エネルギー情報提供システム))

出典)環境省「REPOS」>再生可能エネルギーポテンシャルメニュー>中小水力>地図

中小水力河川部導入ポテンシャル

100kW 未満

N 100 - 200kW

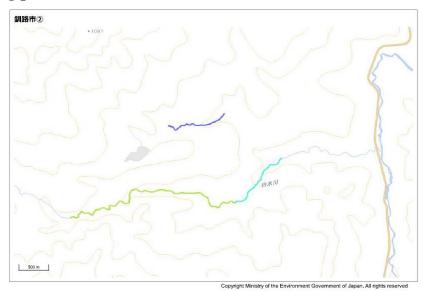
200 - 500kW

N 500 - 1,000kW

N 1,000 - 5,000kW

N 5,000 - 10,000kW

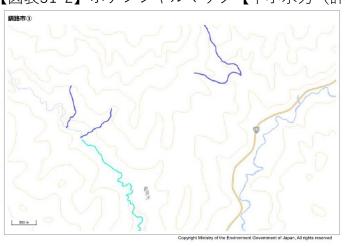
M 10,000kW 以上

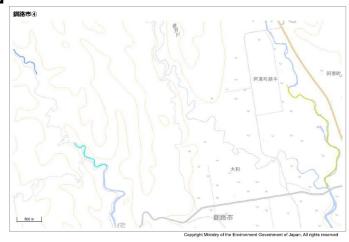

【5】中小水力

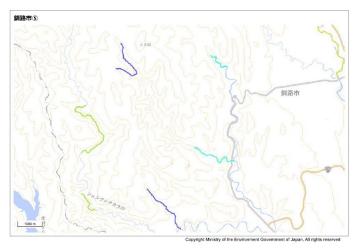
2) 事業性を加味した利用可能量の検討

・ポテンシャルのある地域は、アクセスが悪く、周辺に電力需要がなく事業 化のハードルが高いことから検討対象外とする。

【図表31-1】ポテンシャルマップ【中小水力(詳細版)①、②】

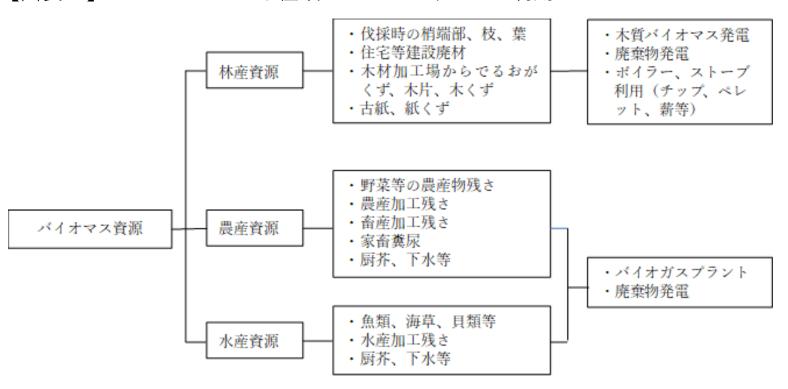


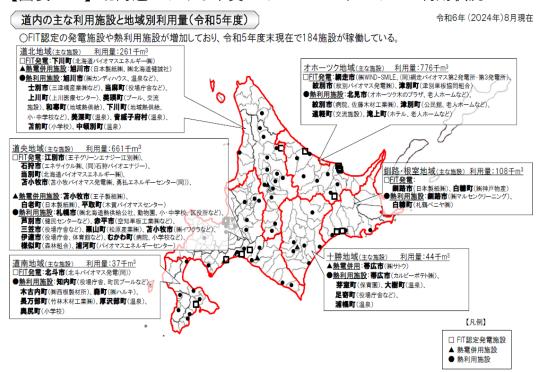

出典)環境省「REPOS」>再生可能エネルギーポテンシャルメニュー>中小水力>地図


【5】中小水力

2) 事業性を加味した利用可能量の検討

【図表31-2】ポテンシャルマップ【中小水力(詳細版)③、④、⑤】




- 【6】バイオマス
 - 1) バイオマスエネルギー利用の種類
 - ・バイオマスの種類と概要は以下のとおり。

【図表32】バイオマスの主な種類と主たるエネルギー利用

- 【6】バイオマス
 - 2) 木質バイオマス
 - ①北海道における木質バイオマスエネルギーの利用状況
 - ・北海道における木質バイオエネルギー利用施設、木質バイオマス利用量推移は以下のとおりで間伐材等未利用材の伸びが著しい(FITによる木質バイオマス発電)。熱電併用施設、熱利用施設利用状況は経済的メリットが生まれていないことから横ばいである。

【図表33-1】北海道における木質バイオマスエネルギーの利用状況

- 【6】バイオマス
 - 2) 木質バイオマス
 - ①北海道における木質バイオマスエネルギーの利用状況

【図表33-2】木質バイオマス利用量の推移

												于m3
		平成25年	平成26年	平成27年	平成28年	平成29年	平成30年	令和元年	令和2年	令和3年	令和4年	令和5年
	FIT認定発電施設	111	107	144	448	653	814	844	967	981	1,008	1,347
利用形態	熱電併用施設	307	278	301	255	273	214	324	278	282	353	304
	熱利用施設	188	196	167	182	163	153	214	214	221	237	236
	未利用材	96	81	123	442	701	795	850	979	1,029	1,085	1,370
由来	建設発生木材	238	245	264	224	166	169	215	213	175	232	208
	製材工場端材	272	255	225	219	222	217	317	267	279	281	310
	合計	606	581	612	885	1,089	1,181	1,382	1,459	1,484	1,598	1,887

出典) 北海道林務局林業木材課利用推進係 ホームページより作成

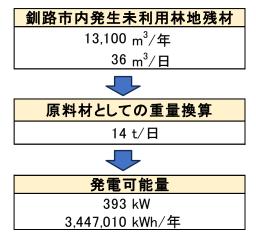
- 【6】バイオマス
 - 2) 木質バイオマス
 - ②釧路市における木質バイオマスエネルギーの利用状況
 - ・釧路市の木質バイオマスの利用状況は以下のとおり。

【図表34】釧路市のFIT認定木質バイオマス発電所

発電事業者名	定格電力	原材料
日本製紙株式会社	88,000 kW	石炭、木質バイオマス(輸入原料)
株式会社釧路火力発電 112,000 kW		石炭、木質バイオマス(木質チップ、パーム椰子)(石炭 70%、木質30%)

注)日本製紙㈱の発電施設は、日本製紙釧路工場生産終了後、日本製紙㈱釧路事業所と日本製紙釧路エネルギー㈱により操業している。

出典) FITポータル「事業計画認定情報 公表用ウェブサイト 2025年1月31日時点」


- 【6】バイオマス
 - 2) 木質バイオマス
- ③釧路市における木質バイオマスの利用可能性の検討

ポイント

製材所端材は発生量に対して需要が大きいことより供給面の課題が大きい。輸入原料は需要増大により安定供給、価格面の課題大きい。間伐材等未利用材の利用は運び出しに課題があるが最も有望。熱利用、熱電併用は一定水準で進むことが見込まれる。

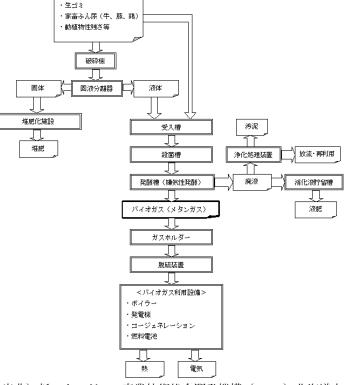
- 【6】バイオマス
 - 2) 木質バイオマス
 - ④釧路市における木質バイオマスの利用可能量の推計
 - ・未利用材の利用システムが確立したと仮定して推計。3,447MWh/年と推計される。

【図表35】釧路市内で発生する未利用林地残材を活用した場合の発電可能量の推計

参考事例

	原料木材量	定格発電
北海道北斗バイオマス発電所	73 t/日	1990 kW
苫小牧バイオマス発電所	229 t/日	6,194 kW

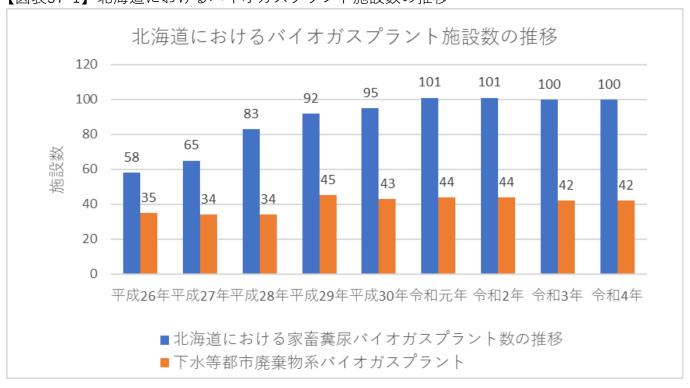
注)釧路市の未利用林地残材の量は、北海道林務局林業木材課利用推進係ホームページの「令和元年度市町村別林地未利用材発生量 (推計)」より。


- 【6】バイオマス
 - 3) バイオガスプラント
 - ①バイオガスプラントの概要
 - ・種類別バイオガス発生量と、バイオガスプラントシステムのフローは以下のとおり。

【図表36-1】バイオガス発生量

種類	バイオガス発生量
生ごみ	100∼220 m³∕ t
厨芥 (固形分20±0.5%) +剪定枝	100∼150 m³∕ t
牛ふん	20∼30 m³∕ t
豚ふん	20~60 m³/ t
鶏ふん	30 m³/t

出典)「北海道バイオガスエネルギー利用 ガイド」 (2001年(平成13年))


【図表36-2】バイオガス生成システム

出典)新エネルギー・産業技術総合開発機構(NEDO)北海道支部 「北海道バイオガスエネルギー利用ガイド」(2001年(平成13年))

- 【6】バイオマス
 - 3) バイオガスプラント
 - ②北海道におけるバイオガスプラントの導入状況
 - ・北海道のバイオガスプラントの施設数、家畜糞尿バイオガスプラントの地域分布は 以下のとおりで酪農地帯である十勝、釧路・根室、オホーツク地域に集積。

【図表37-1】北海道におけるバイオガスプラント施設数の推移

- 【6】バイオマス
 - 3) バイオガスプラント
 - ②北海道におけるバイオガスプラントの導入状況

【図表37-2】北海道における家畜糞尿バイオガスプラントの数

バイオガスプラント	設置数
乳牛ふん尿	100基
豚ふん尿	7基
建設中•予定	10基

出典)「エア・ウォーターグループにおけるバイオメタンに関する取組み紹介」(2024年(令和6年))より作成

- 【6】バイオマス
 - 3) バイオガスプラント
 - ③釧路市におけるバイオガスプラントの立地状況
 - ・釧路市におけるバイオガスプラントの立地は以下のとおり。

【図表38】釧路市の家畜糞尿バイオガスプラントの概要

名称	野村牧場	阿寒農業協同組合	株式会社エコロミ (阿寒マイクログリッド)
FIT認定年月	2013年6月	2023年3月	2022年2月
乳牛頭数	80 頭		1,200 頭
処理糞尿量	4 t/日	114 t/日	63.2 t/日
バイオガス発生量	205 N·m3/日	2,000 N·m3/日	1300 N·m3/日
発電量	400 kwh/日	4818 kwh/日	

出典)バイオマスリサーチ㈱HP「FITポータル(事業計画認定情報公表用ウェヴサイト2025年1月31日時点) | より作成

- 【6】バイオマス
 - 3) バイオガスプラント
 - ④釧路市におけるバイオガスプラントの導入可能性の検討

ポイント

バイオガスプラントは循環型農業で重要な役割を果たす可能性があるが採算面ではFIT利用が不可欠で安定運営上の課題もあるが、ここでは釧路市内の乳牛、肉牛の糞尿をすべて活用したと仮定すると、ガスコージェネレーション18,713MWh/年,発熱量50,455GJ/年と推計された。

【図表39】家畜糞尿由来のバイオガス利用可能量の推計

							ガスコージェ	ネレーション
		1日当り糞尿量 kg/頭	1日当り糞尿量 年間糞尿量 kg/頭 t/年	バイオガス発生量 m3/年	発熱量 (Mcal)	発熱量 (GJ)	発電量 (MWh)	発熱量 (GJ)
乳牛	13,943	53	268,031	5,360,619	28,899,096	120,995	16,155	43,558
肉牛	4651	25	42,440	848,808	4,575,921	19,158	2,558	6,897
計	18,594	78	310,471	6,209,426	33,475,017	140,153	18,713	50,455

門1疋		
バイオガス発生量	20	m3/t
メタンガス含有率	60	%
バイオガス発熱量	5,391	kcal/m3
ガスコージェネレーショ総合効率	90	%

資料:阿寒農業協同組合の事例をもとに概数値を設定

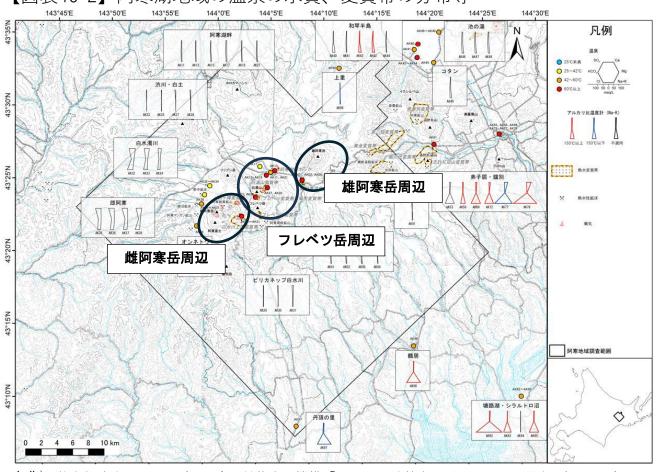
電力へのガス配分率

注) バイオガスプラント・ガスコージェネレーションによる熱利用に関しては、施設周辺での利用に限定されることに留意 する必要がある。

【7】地熱・地中熱・温泉熱

1) 釧路市の地熱資源の現状

・阿寒湖温泉地区の源泉温度は以下のとおり。


【図表40-1】阿寒湖温泉地区の源泉の状況

源泉名	温度	泉質名
新2号源泉	59°C	単純温泉
新7号源泉	41°C	単純温泉
11号源泉	61°C	単純温泉
12号源泉	64°C	単純温泉
13号源泉	68°C	単純温泉
14号源泉		単純温泉 休止中
15号源泉	62°C	炭酸水素塩温泉
16 号 源泉	52°C	単純温泉
正次6号源泉	56°C	炭酸水素塩•塩化物温泉
正次7号源泉	60°C	単純温泉
チップ川源泉	50°C	単純温泉
神社源泉	60°C	単純温泉
河田2号源泉	61°C	単純温泉

出典) 前田一歩園財団のホームページ資料をもとに作成

- 【7】地熱・地中熱・温泉熱
 - 1) 釧路市の地熱資源の現状

【図表40-2】阿寒湖地域の温泉の水質、変質帯の分布等

出典) 独立行政法人エネルギー・金属鉱物資源機構「JOGMEC地熱資源ポテンシャル調査の概要とデータの公開について| (2021年(令和3年))

【7】地熱・地中熱・温泉熱

2) 地熱利用形態


・地熱利用形態は以下のとおり。

【図表41】地熱、源泉温度と主な利用形態

温度	主な利用形態		
200°C以上	地熱発電所(フラッシュ式)		
80°C∼200°C	バイナリー発電		
	ヒートポンプ(暖房、給湯加温等)		
80℃以下	地熱の直接利用(暖房、ロードヒーティング、 温水プール、ハウス栽培、水産養殖等)		

出典) NEDO「再生可能エネルギー技術白書第2版7章地熱発電」(2014年(平成26年))、環境 省「温泉熱有効活用に関するガイドライン」(2019年(平成31年))、環境省「温泉熱利 用事例集」等の資料を参考に作成

- 【7】地熱・地中熱・温泉熱
 - 3) 北海道における地熱利用の現状
 - ・北海道における地熱利用は以下のとおり。

出典)北海道経済産業局「北海道における地熱開発の現況」(2024年(令和6年))をもとに作成

- 【7】地熱・地中熱・温泉熱
 - 4) 釧路市における地熱活用の可能性

ポイント

地熱発電は、自然環境等への影響もあり大規模フラッシュ式 地熱発電の開発可能性は低い。バイナリ発電は源泉温度の低さ から採算性の観点で難しい。ヒートポンプは導入事例もあり可 能性がある。

- 【7】地熱・地中熱・温泉熱
 - 5) 阿寒湖温泉地区におけるヒートポンプ利用による費用及び二酸化炭素削減可能量

推計結果

阿寒湖温泉地区宿泊施設全体で導入と仮定すると100GJ/年と推計される。

【1】算定方法

・森林計画対象森林のうち森林吸収源対策が行われた森林を対象とし、森林吸収源対 策を行った森林の吸収のみを推計する方法で算定。推計式は以下のとおり。

【図表44-1】森林経営活動や植林活動が実施された森林で生じた吸収量の推計方法

▶ 推計式

$$CO_{2Removal} = \sum_{i} \left\{ Area_{Forest,i} \times \Delta Trunk_{SC,i} \times WD_{i} \times BEF_{i} \times \left(1 + R_{ratio,i}\right) \times CF \right\} \times \left(-\frac{44}{12}\right)$$

記号	名称	定義		
CO _{2Removal}	吸収量	当該年度の地上部及び地下部バイオマス中の吸収量[t-CO ₂ /年]		
Area.	面積	基準年度以降に森林経営活動や植林活動が実施された森林の樹種・林齢・地位		
Area _{Forest,i}		別の面積 [ha]		
ΔTrunk _{SC,i}	年間幹材積	上記森林の樹種・林齢・地位別の単位面積当たりの年間幹材積成長量[m³/ha/		
Δ II UIIK _{SC,i}	成長量	年]		
WDi	容積密度	樹種別の幹材積 (成長) 量をバイオマス量 (乾燥重量) に換算するための係数		
VVDi		[t-d.m./m ³]		
BEF _i	バイオマス	樹種・林齢別の幹のバイオマス量に枝葉のバイオマス量を加算補正するための		
DLI i	拡大係数	係数 (拡大係数)		
R _{ratio,i}	地下部比率	樹種別の地上部に対する地下部の比率		
CF	炭素含有率 バイオマス量 (乾燥重量) を炭素量に換算するための炭素比率[t-C/t-d.m.]			

※i は森林経営活動や植林活動を実施した森林の樹種・林齢・地位の種類

出典)環境省「地方公共団体実行計画(区域施策編)策定・実施マニュアル(算定方法編)」(令和6年4月)

4.釧路市全域の森林による温室効果ガス吸収量推計 【1】算定方法

- ・施業面積把握困難なため、施業面積=計画対象面積×FM率で計算。
- ※FM率とは「森林経営」に該当する森林の面積の割合のこと。

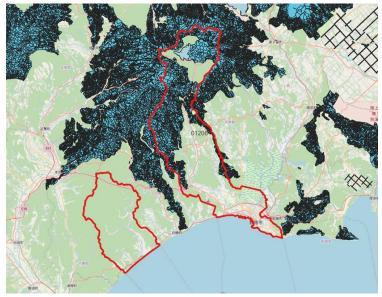
【図表44-2】推計式に用いるデータの根拠資料及び推計方法

名称	根拠資料/備考			
吸収量	=(面積×FM率)×年間幹材積成長量×容積密度×バイオマス拡大係数×(1+地下部比率)×炭素含有率 ×44/12			
面積	各資料の森林面積を使用			
FM率 (面積補正)	施業面積の把握が困難なため、FM率をかけた面積を施業面積として算定 提供資料「令和4年度「森林経営」対象森林率調査報告書」 2021年度 ※道有林は国有林のFM率を代用 ※地域区分は東北の数値を代用			
年間幹材積成長量	各資料より			
容積密度	地方公共団体実行計画(区域施策編)策定・実施マニュアル(算定手法編) 表 1-119 森林バイオマスの吸収・排出量を推計する際の各種係数			
バイオマス拡大係数	地方公共団体実行計画(区域施策編)策定・実施マニュアル(算定手法編) 表 1-119 森林バイオマスの吸収・排出量を推計する際の各種係数			
地下部比率	地方公共団体実行計画(区域施策編)策定・実施マニュアル(算定手法編) 表 1-119 森林バイオマスの吸収・排出量を推計する際の各種係数			
炭素含有率	地方公共団体実行計画(区域施策編)策定・実施マニュアル(算定手法編) 表 1-119 森林バイオマスの吸収・排出量を推計する際の各種係数			

注)FM率とは「森林経営」に該当する森林の面積の割合のこと。

【2】対象森林の把握

・計画対象森林は釧路市における国有林、道有林、一般民有林とした。


1) 国有林

・林野庁の「国有林データ」で、詳細及び推計方法、国有林野の所在地は以下のとおり。

【図表45-1】項目別データの根拠資料および推計方法【国有林】

項目	受領データ	その他資料 /推計	根拠資料	
市町村		•	国交省の国有林野データを参考に、すべて阿寒町とした※次ページ参照	
林種	•			
樹種	•	•	人工林:受領データ 天然林:樹種不明のため、阿寒町の私有林を参考に「天然林針葉樹」、「天然林広葉樹」の2 種類に分類	
林齢	● (齢級)	•	人工林:地域経済研究センターからの情報より、R2年調査データのため+4年とした ※R2年時点での1~19節級+4年(=林節5~99年) 天然林:阿寒町の私有林の平均林節(天然林針葉樹、天然林広葉樹)	
面積		•	人工林(トドマツ等): 節級別面積÷5 人工林(エゾマツ、ヤチダモ): 個別の節級別面積が不明のため、阿寒町の私有林の割合で 案分 天然林: 節級別面積が不明のため、阿寒町の私有林の割合で案分	
地位		•	「森林計画関連資料」第11 市町村・樹種別地位管理表(地位テーブル) ※天然林針葉樹:「その他人工林針葉樹」を代用 針広混交林:「天然林広葉樹」を代用	
成長量		•	「森林計画関連資料」第12 樹種・地位別蓄積樹高管理表(蓄積・樹高テーブル)	

【図表45-2】釧路市における国有林野

出典) 国土交通省「国土数値情報ダウンロードサイト」 >国有林野 2019年(令和元年) 度版より作成

【2】対象森林の把握

2) 道有林

・道庁の「十勝管理区森林調査簿-成長後」データで、詳細及び推計方法は以下のとおり。

【図表45-3】項目別データの根拠資料および推計方法【道有林】

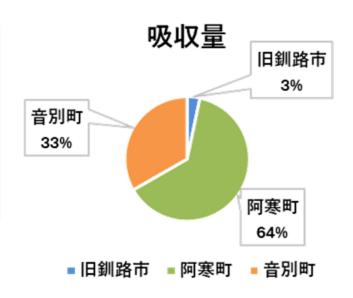
項目	受領データ	その他資料 /推計	根拠資料/備考
市町村		•	地域経済研究センターからの情報より、すべて音別町として算定
林種	•		林種コード「1」「2」(=人工林、天然林?)
樹種	•	•	樹種コード: 受領データ 樹種: 森林資源コード表
林齢	•		地域経済研究センターからの情報より、R5年度のデータのため+1年の林齢とした
面積	•	•	単位はhaとする
地位	•	•	受領データ: 地理級コード 地理級コードが空白: 「森林計画関連資料」第11 市町村・樹種別地位管理表(地位テーブル) ※天然林針葉樹: 「その他人工林針葉樹」を代用 針広混交林: 「天然林広葉樹」を代用
成長量		•	「森林計画関連資料」第12 樹種・地位別蓄積樹高管理表(蓄積・樹高テーブル)

【2】対象森林の把握

- 3) 一般民有林
- ・道庁の「十勝管理区森林調査簿-成長後」データで、詳細及び推計方法は以下のとおり。

【図表45-4】項目別データの根拠資料および推計方法【一般民有林】

項目	受領データ	その他資料 /推計	根拠資料/備考			
市町村	•					
林種	•					
樹種	•					
林齢	•		令和4年度データのため、+2年の林齢とした			
面積	•	•	単位はhaとする			
地位		•	「森林計画関連資料」第11 市町村・樹種別地位管理表(地位テーブル) ※天然林針葉樹:「その他人工林針葉樹」を代用 針広混交林:「天然林広葉樹」を代用			
成長量		•	「森林計画関連資料」第12 樹種・地位別蓄積樹高管理表(蓄積・樹高テーブル)			

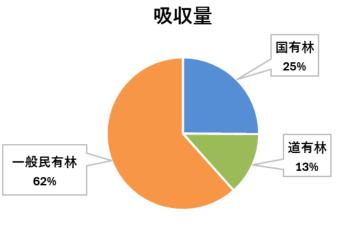

【3】吸収量算定結果

ポイント

釧路市の吸収量は196,914t-CO2/年で、うち旧釧路市6,221t-CO2/年(3%)、阿寒町125,058t-CO2/年(64%)、音別町65,636 t-CO2/年(33%)となっている。この吸収量は釧路市の温室効果ガス排出量1,600千t-CO2/年(2021年)の12.3%の規模となっている

【図表46-1】地域別吸収量

区分	旧釧路市	阿寒町	音別町	合計
面 積 (ha)	5,085	61,718	35,110	101,913
成長量 (m3)	4,680	92,442	50,388	147,510
吸収量 (t-CO2/年)	6,221	125,058	65,636	196,914


【3】吸収量算定結果

ポイント

森林区分別では、国有林49,448 t-CO2/年(25%)、 道有林26,187 t-CO2/年(13%)、一般民有林121,279 t-CO2/年(62%)となっている。

【図表46-2】森林区分別吸収量

	区分	国有林	道有林	一般民有林	合計
	面積 (ha)	39,200	15,918	46,795	101,913
	成長量 (m3)	37,015	19,646	90,848	147,510
	吸収量 (t-CO2/年)	49,448	26,187	121,279	196,914

【1】岡山県真庭市

- ●面積が828kmがあり、東京都23区の1.3倍ある地域。
- ●人口は約4.3万人。
- ●第1回脱炭素先行地域の認定を受けた。

特徴


- ●森林面積は面積の約80%を占めており、全国的には珍 しく、桧の割合が多い。
 - ●美作ヒノキというブランドを持っており、全国の桧の 価格決定に大きな影響力(プライスリーダー)がある。
- - ●生ごみの資源化。

取組

●公用車のEV化(次世代自動車化)。

●木質バイオマス発電所の増設。

- ●全公共施設のLED化やPPAによる太陽光パネルの設置。
- ●地域新電力会社の設立。

【2】福岡県うきは市

●面積が約117k㎡。

- ●人口は約2.7万人。
- **特徴** ●第4回脱炭素先行地域の認定を受けた。
 - ●自然が豊かなので、主要産業は農業である。その中で もフルーツが県内でも有名である。

●地域エネルギー会社である株式会社カゼノネを立ち上げ。

●脱炭素に配慮して栽培されたフルーツの「サステナフルーツ(仮称)」として新たな付加価値を創出。

取組

- ●観光農園の果樹剪定枝からバイオ炭を製造し、農地の 土壌改良と炭素貯留(Jクレジット)に活用。
- ●道の駅や公共施設に太陽光発電・蓄電池の導入。
- ●道の駅を中心にEV急速充電器を設置し、観光用超小型EVや農業用運搬車のEV化。

【3】長野県松本市

- ●面積が約978km。
- ●人口は約23万人。
- ●第1回脱炭素先行地域の認定を受けた。

- **特徴** ●北アルプスや美ヶ原など美しい自然環境があり、松本 城の城下町として栄えた歴史文化のある都市。
 - ●冬場は山の上には雪が降るが、平らな土地は雪が降ら ず、晴天が続くため、太陽光発電に最適な場所。
 - ●令和4年の8月に「まつもとゼロカーボン実現計画Ⅰ を策定。

取組

- 「木質バイオマスストーブの導入資金支援」の導入。
- ●公共施設へのチップボイラーの導入促進。
- ●松本平森林エネルギー(株)の設立。 (木質チップの持続可能な供給体制づくりのため。)
- ●松本平ゼロカーボン・コンソーシアムの発足

6.検討結果

6.検討結果

①地域特性および経済可能性を踏まえた再生可能エネルギーの利用可能量推計

- ●再生可能エネルギー(電気)は160,345MWh/年となった。これは、太陽光(建物系)の数字である。太陽光(土地系)、風力、中小水力、地熱については、環境面及び事業性の観点から推計の対象外とした。
- ●再生可能エネルギー(熱)は、地熱発電、バイナリー発電は環境面及び事業性の観点から推計の対象外としたが、温泉廃熱利用ヒートポンプについては100GJ/年と推計された。
- ●木質バイオマス発電は、製材所端材、輸入原料は供給面の課題が大きく推計対象外とし、有望な間伐材等未利用材を推計し、3,447MWh/年と推計された。
- ●家畜糞尿バイオマスは、釧路市内の乳牛、肉牛糞尿のすべてを活用したと仮定し、ガスコージェネレーション18,713MWh /年、発熱量50,455GJ /年と推計された。

②釧路市全域の森林による温室効果ガス吸収量把握

- ●釧路市の吸収量は196,914t-CO2/年で、うち旧釧路市6,221t-CO2/年(3%)、阿寒町125,058t-CO2/年(64%)、音別町65,636 t-CO2/年(33%)と推計された。この吸収量は釧路市の温室効果ガス排出量1,600t-CO2/年(2021年)の12.3%の規模となっている。
- ●森林区分別では、国有林49,448 t-CO2/年(25%)、 道有林26,187 t-CO2/年(13%)、一般民有林121,279 t-CO2/年(62%)となっている。